

ABSTRACT

FU, CHAO-YING

Compiler-Driven Value Speculation Scheduling.

(Under the direction of Prof. Thomas M. Conte.)

Modern microprocessors utilize several techniques for extracting instruction-level

parallelism (ILP) to improve the performance. Current techniques employed in the

microprocessor include register renaming to eliminate register anti- and output (false)

dependences, branch prediction to overcome control dependences, and data

disambiguation to resolve memory dependences. Techniques for value prediction and

value speculation have been proposed to break register flow (true) dependences among

operations, so that dependent operations can be speculatively executed without waiting

for producer operations to finish. This thesis presents a new combined hardware and

compiler synergy, value speculation scheduling (VSS), to exploit the predictability of

operations to improve the performance of microprocessors. The VSS scheme can be

applied to dynamically-scheduled machines and statically-scheduled machines. To

improve the techniques for value speculation, a value speculation model is proposed as

solving an optimal edge selection problem in a data dependence graph. Based on three

properties observed from the optimal edge selection problem, an efficient algorithm is

designed and serves as a new compilation phase of benefit analysis to know which

dependences should be broken to obtain maximal benefits from value speculation. A

pure software technique is also proposed, so that existing microprocessors can employ

software-only value speculation scheduling (SVSS) without adding new value prediction

hardware and modifying processor pipelines. Hardware-based value profiling is

investigated to collect highly predictable operations at run-time for reducing the overhead

of program profiling and eliminating the need of profile training inputs.

COMPILER-DRIVEN VALUE SPECULATION
SCHEDULING

by

CHAO-YING FU

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

COMPUTER ENGINEERING

Raleigh

2001

APPROVED BY:

Prof. Thomas M. Conte
Chair of Advisory Committee

 Prof. Paul D. Franzon

Prof. Wentai Liu Prof. Eric Rotenberg

ii

Biography

Chao-ying Fu was born on June 5, 1973 in Taichung, TAIWAN. Upon receiving

the Bachelor of Science degree in Electrical Engineering from National Taiwan

University in June 1995, he began the graduate study at North Carolina State University,

USA. In December 1996, he obtained the Master of Science degree in Computer

Engineering. He then enrolled in the doctoral program in Computer Engineering under

the supervision of Dr. Thomas M. Conte. He completed the Ph.D. degree in May 2001.

iii

Acknowledgements

First of all, I thank God for directing my life and leading me to North Carolina

State University. Next, I acknowledge the contribution of Prof. Thomas M. Conte, my

Ph.D. advisor, to this thesis. He has led me to do research on compiler-driven value

speculation scheduling and investigate a pure software technique for value speculation

since the beginning of my Ph.D. study. Without his vision, this thesis cannot be finished.

I feel fortunate to have worked under his guidance. Also, I would like to thank Prof.

Thomas M. Conte, Prof. Paul D. Franzon, Prof. Wentai Liu, and Prof. Eric Rotenberg to

be my thesis committee. Thanks to Prof. Albert J. Shih for being the graduate school

representative.

I would like to thank Dr. Youfeng Wu and Dr. Allan D. Knies. I learned a lot

from them when I was an intern in Intel in 1997 and 1999.

I would like to thank all previous and current members in the Tinker group;

Kishore Menezes, Sumedh Sathaye, Sanjeev Banerjia, Bill Havanki, Sergei Larin, Matt

Jennings, Emre Ozer, Mark Toburen, Kim Hazelwood, Vikram Rao, Tripura Ramesh,

and Huiyang Zhou. With their help, the LEGO compiler can serve as the tool for this

thesis.

I would like to thank my grandmother, Yu-Chu, my father, Jeng-Nan, my mother,

Huei-Yang, my sisters, Wei-Li and Wei-Ting, and brothers-in-law, Kuo-Shu and Fu-I, for

their abundant love and support.

Last, I would like to thank all my friends in Raleigh. Because of them, I had a

wonderful student life at NC State.

iv

Table of Contents

List of Figures .. vi

List of Tables ...x

Chapter 1 Introduction ...1

1.1 Introduction..1
1.2 Research Contributions..6
1.3 Outline of the Thesis..7

Chapter 2 Value Speculation Scheduling ..8

2.1 Microarchitectural Support for VSS..9
2.2 Value Predictor Design..14
2.3 A Value Speculation Scheduling Algorithm ...18
2.4 Experimental Results ...22
2.5 Summary..29

Chapter 3 Modeling Value Speculation ...31

3.1 Introduction of Value Speculation...33
3.2 An Optimal Edge Selection Problem...36

3.2.1 Terminology of Data Dependence Graphs ..36
3.2.2 The Problem Statement..40

3.3 Three Properties Observed from the Optimal Edge Selection Problem............44
3.4 An Optimal Edge Selection Algorithm ...50

3.4.1 The Algorithm ...50
3.4.2 Running Time Analysis ...53

3.5 Experimental Results ...56
3.5.1 Results of Value Profiling and Branch Profiling.......................................57
3.5.2 Maximal Benefits from Value Speculation ...60
3.5.3 Results of Selected Edges and Nodes..62

3.6 Summary..67

v

Chapter 4 Compiler-Directed Edge Selection ...68

4.1 Schemes of Exposing Compiler-Directed Edge Selection70
4.2 Heuristics Applied to the Optimal Edge Selection Algorithm71
4.3 Experimental Results ...74

4.3.1 Edge Selection ...74
4.3.2 Code Size Expansion ...76
4.3.3 Register Pressure ...77
4.3.4 Execution Time Speedup...78

4.4 Summary..83

Chapter 5 Software-Only Value Speculation Scheduling85

5.1 Software-Only Value Speculation Scheduling ..87
5.2 Design and Analysis of Software Static Stride Value Predictors90
5.3 Experimental Results ...96
5.4 Summary..100

Chapter 6 Hardware-Based Value Profiling ...102

6.1 Profile Invariance...104
6.2 Hardware-Based Value Profiling...111
6.3 Experimental Results ...113
6.4 Summary..120

Chapter 7 Conclusions and Future work ..122

References ...125

vi

List of Figures

Figure 1.1 Pipeline stages of the hardware-only value speculation mechanism for flow
dependent instructions. The dependent instruction is speculatively executed at the
same cycle as its producer instruction. ..2

Figure 2.1 Pipeline stages of the VSS scheme. Two new operations, LDPRED and
UDPRED, are introduced to be the interface with the value predictor during the
execution stage...10

Figure 2.2 An example of value speculation scheduling...10

Figure 2.3 Data dependence graphs for code in Figure 2.2. The numbers along each edge
represent the latency of each operation. In (a), the schedule length is seven cycles.
In (b), because of exposed ILP and dependence height reduction, the schedule length
is reduced to five cycles...12

Figure 2.4 The block diagram of value predictor design featuring LDPRED and
UDPRED operations..16

Figure 2.5 The hybrid predictor (with stride and two-level predictors). Saturating
counters are compared to select between the prediction techniques.18

Figure 2.6 A value speculation scheduling algorithm. ..20

Figure 2.7 Prediction accuracies of load operations using stride, two-level, and hybrid
predictors. ..25

Figure 2.8 The prediction accuracy distribution for static load operations using the hybrid
predictor. ..27

Figure 2.9 The prediction accuracy distribution for dynamic load operations using the
hybrid predictor. ..27

Figure 2.10 The execution time speedup for programs scheduled with VSS over without
VSS. Prediction accuracy threshold values of 90%, 80%, 70%, 60% and 50% are
used. ...29

Figure 3.1 An algorithm of computing heights of all nodes in a data dependence graph. 38

Figure 3.2 An algorithm of finding critical paths in a data dependence graph.39

Figure 3.3 (a) A data dependence graph. (b) A modified data dependence graph after
performing the value speculation transformation on E2 (from node 8 to node 10).
Thick edges and thick-circled nodes are on the critical path.40

vii

Figure 3.4 An optimal edge selection problem..42

Figure 3.5 Penalties of nodes...42

Figure 3.6 Property 1 of the optimal edge selection problem: decomposition..................45

Figure 3.7 Property 2 of the optimal edge selection problem: optimal substructure.........46

Figure 3.8 Property 3 of the optimal edge selection problem: critical edge selection.......49

Figure 3.9 An optimal edge selection algorithm. ..51

Figure 3.10 A selection table. Each selection entry records a set of edges and its
corresponding benefit. ...52

Figure 3.11 A call graph of the Selection_Algorithm for one data dependence graph in
129.compress. In each node, the first number is the called order, and the second
number is the corresponding benefit that the Selection_Algorithm finds..................54

Figure 3.12 The empirical running time analysis of the optimal edge selection algorithm.
For all data points, the average-case complexity is y = 0.0016x3 - 0.67x2 + 67.349x -
306.35. The worst-case complexity is y = 0.1012x4 - 5.1062x3 + 80.286x2 - 416.35x
+ 467.08. ..56

Figure 3.13 Value prediction accuracies and BNE branch prediction accuracies of
integer-register-writing operations in the SPECint95 benchmarks.58

Figure 3.14 BNE branch prediction accuracies sorted by their corresponding value
prediction accuracies. ..58

Figure 3.15 The number of improved paths using branch misprediction penalties of 2, 5,
and 10 cycles. (Note that 099.go has no improved paths in all cases.)61

Figure 3.16 The speedup of value speculation on the 20 most heavily executed paths
using branch misprediction penalties of 2, 5, and 10 cycles. (Note that 099.go has
no speedups in all cases.)...62

Figure 3.17 The value prediction accuracy distribution of the selected edges (using a 10-
cycle branch misprediction penalty). ...63

Figure 3.18 The location distribution of the selected edges (using a 10-cycle branch
misprediction penalty). ..64

Figure 3.19 The location distribution of the selected producer operations in data
dependence graphs (using a 10-cycle branch misprediction penalty).66

Figure 3.20 The location distribution of the selected consumer operations in data
dependence graphs (using a 10-cycle branch misprediction penalty).66

Figure 4.1 An instruction format that can choose a prediction method and specify
dependences for value speculation. ...71

Figure 4.2 The normalized number of edge selections that are tried by the original
algorithm and the algorithms with five value prediction accuracy thresholds for the
20 most heavily executed paths in SPECint95. ...73

viii

Figure 4.3 The normalized maximal benefit using the original algorithm and the
algorithms with five value prediction accuracy thresholds for the 20 most heavily
executed paths in SPEint95. (Note that 099.go has no benefits in all cases.)...........73

Figure 4.4 The execution time speedup of VSS-optimized code over based code using
nine machine models. ..79

Figure 4.5 Branch misprediction rates of base code and VSS-optimized code by using
Model 9. ...82

Figure 5.1 Examples of ILP transformation via VSS and SVSS.......................................88

Figure 5.2 (a) The data dependence graph for code in Figure 5.1(a). (b) The data
dependence graph for code in Figures 5.1(b) or 5.1(c). Thick edges and thick-
circled nodes are deleted or created by VSS or SVSS...88

Figure 5.3 Value prediction accuracies of integer-register-writing operations in the top 20
treegions in SPECint95 using hardware stride and hardware stride two-delta value
predictors. ..92

Figure 5.4 The distribution of distinct stride values for predictable operations in the top
20 treegions in SPECint95...92

Figure 5.5 Value prediction accuracies using hardware stride, hardware stride two-delta,
software static stride (global), and software static stride (local) value predictors for
predictable operations in the top 20 treegions in SPECint95.95

Figure 5.6 The speedup on the 20 most heavily executed paths in each SPECint95
benchmark using hardware stride, hardware stride two-delta, and software static
stride value predictors. (Note that 099.go has no speedups in all cases.).................97

Figure 5.7 The execution time speedup of SVSS-optimized code using software static
stride value predictors over base code. (Note that the speedups of 126.gcc are
slightly less than 1.00 on Models 2 and 3.) ...100

Figure 6.1 Profile shift between train and test input sets for all integer operations.108

Figure 6.2 Profile shift between train and test input sets for predictable integer operations
whose prediction accuracies are higher than 90%. ..108

Figure 6.3 Profile shift between train and ref input sets for all integer operations.109

Figure 6.4 Profile shift between train and ref input sets for predictable integer operations
whose prediction accuracies are higher than 90%. ..109

Figure 6.5 A scheme of hardware-based value profiling...111

Figure 6.6 Statistics of static operations selected by hardware-based value profiling. ...116

Figure 6.7 Statistics of dynamic operations selected by hardware-based value profiling.
...116

Figure 6.8 Value prediction accuracies of operations selected by hardware-based value
profiling. Some value prediction accuracies are zeros, because no operations are
collected under these schemes. ..117

ix

Figure 6.9 The synthesized value misprediction rates and branch misprediction rates for
the scheme of hardware-based value profiling. ...118

Figure 6.10 The execution time speedup of VSS-optimized code over base code using the
feedbacks from program profiling and hardware-based value profiling.120

x

List of Tables

Table 2.1 Statistics of total profiled, static and dynamic load operations.23

Table 3.1 Penalties under different recovery techniques for value speculation.35

Table 3.2 The top five opcodes and percentages of the selected producer and consumer
operations (using a 10-cycle branch misprediction penalty).65

Table 4.1 Results of the optimal edge selection algorithm with the value prediction
accuracy threshold of 90% on the 20 most heavily executed paths in SPECint95....75

Table 4.2 The code size of base code and VSS-optimized code in SPECint95. (The unit
is the number of single operations.)...76

Table 4.3 The register usage in the procedures that are different between base code and
VSS-optimized code. ...77

Table 4.4 Functional blocks used for composing different machine models.79

Table 4.5 The execution time breakdown of base code and VSS-optimized code by using
Model 9. (Bold fonts indicate that VSS-optimized code performs better than base
code does.) ...82

Table 4.6 Statistics of multi-way branches in base code and VSS-optimized code. Each
data represents the number of multi-ops that contains a certain number of single
branches from 1 to 16. ...83

Table 5.1 The top five stride values for predictable operations in SPECint95. In each
grid, the first number is a stride value and the second number in parentheses is its
corresponding percentage. ...93

Table 5.2 The number of global registers required for implementing software static stride
value predictors on the 20 most heavily executed paths in SPECint95.....................98

Table 5.3 Three 16-issue VLIW machine models. ..98

Table 6.1 The train input set for the SPECint95 benchmarks. ..105

Table 6.2 The test input set for the SPECint95 benchmarks. ..105

Table 6.3 The ref input set for the SPECint95 benchmarks. ...106

Table 6.4 Statistics of total static and dynamic operations in the SPECint95 benchmarks
using train, test and ref input sets. ...106

Table 6.5 Statistics of profiled operations and prediction accuracies using program
profiling. ..114

xi

Table 6.6 Statistics of profiled operations whose value prediction accuracies are higher
than 90% using program profiling. ..114

1

Chapter 1

Introduction

1.1 Introduction

Modern microprocessors utilize several techniques for extracting instruction-level

parallelism (ILP) to improve the performance. Current techniques include register

renaming to eliminate register anti- and output (false) dependences, branch prediction to

overcome control dependences, and data disambiguation to resolve memory dependences

[1], [41]. Recent research focuses on using value prediction [2], [3], [4] to break register

flow (true) dependences, so that dependent operations can be speculatively executed

without waiting for producer operations to finish. In this thesis, the technique for

allowing speculative execution based on value prediction [6] is called value speculation

[22].

The previous techniques for value speculation utilize hardware-only mechanisms

[2], [3]. In these schemes, the instruction address (PC) of a register-writing instruction is

sent to a value predictor to index a prediction table at the beginning of the fetch stage.

2

During the fetch and dispatch stages, the value predictor generates a prediction that is

forwarded to a dependent instruction prior to its execution stage. The value speculative

dependent instruction must remain in a reservation station (even while its own execution

continues), and be prevented from retiring. At the state-update stage, the predicted value

is compared with the actual result. If the prediction is correct, the dependent instruction

can then release the reservation station, update system states, and retire. If the predicted

value is incorrect, the dependent instruction needs to be re-executed with the correct

operand. Figure 1 illustrates the pipeline stages for value speculation utilizing a

hardware-only scheme.

Figure 1.1 Pipeline stages of the hardware-only value speculation mechanism for
flow dependent instructions. The dependent instruction is speculatively executed at

the same cycle as its producer instruction.

The hardware-only value speculation schemes shown in Figure 1.1 are suitable for

dynamically-scheduled machines, such as superscalars, but they cannot be applied to

Fetch Dispatch Execute State-
Update

Value Predictor Prediction
Verification

Fetch Dispatch Execute State-
Update

Predicted Value

Actual Value

(Predicted
Instruction)
PC

(Dependent
Instruction)
PC

3

statically-scheduled machines, including VLIW [20] and EPIC [27], [28] architectures.

In a related approach to a different problem, the memory conflict buffer [1] was

presented to dynamically disambiguate memory dependences. This allows the compiler

to speculatively schedule memory references above other, possibly dependent, memory

instructions. Recovery code, generated by the compiler, ensures correct program

execution even when the memory dependences actually occur. Aggressively scheduling

memory references that are highly likely to be independent of each other improves

performance. Likewise, value-speculative scheduling attempts to improve performance

by aggressively scheduling flow dependences that are highly likely to be eliminated

through value prediction. Recovery code can also be used when values are mispredicted.

This thesis applies the memory conflict buffer scheme to value speculation and

proposes a new combined hardware and compiler synergy, which is called value

speculation scheduling (VSS). Two new predicting and updating operations, LDPRED

and UDPRED, are proposed to be the interface between the value predictor and program

code. Static VLIW instruction scheduling techniques are used to speculate value

dependent operations aggressively. Hardware value predictors can provide predicted

values for allowing the execution of speculated operations to continue. In the case of

value misprediction, control flow is redirected to recovery code so that the execution can

proceed with correct results. The VSS techniques leverage advantages of both hardware

schemes for value prediction and compiler schemes for exposing ILP. VSS can be

though of as a static ILP transformation that relies on dynamic value prediction hardware.

Several advantages of the VSS scheme are as follows.

4

• Static scheduling provides a larger scheduling scope for exploiting ILP

transformations, identifying long dependence chains suitable for value prediction, and

then re-ordering code aggressively.

• Value-speculative dependent operations can be executed as early as possible before

the predicted operations that they depend on.

• The compiler controls the number of predicted values and assigns different indices to

them for accessing the value prediction table. Only operations that the compiler

deems are good candidates for predictions are then predicted, reducing conflicts for

the hardware.

• Recovery code is automatically generated, reducing the need for elaborate hardware

recovery techniques.

• Instead of relying on statically predicted values (e.g., from profile data), LDPRED

and UDPRED operations access dynamic prediction hardware for enhanced

prediction accuracy.

• VSS can be applied to dynamically-scheduled (superscalar) processors, statically-

scheduled (VLIW) processors, or explicitly parallel instruction computing (EPIC)

processors [27], [28].

• The non-intrusive design for the VSS scheme makes it easy to employ value

prediction and value speculation in future microprocessors.

To improve the techniques for value speculation, a value speculation model is

proposed as solving an optimal edge selection problem in a data dependence graph.

Based on three properties observed from the optimal edge selection problem, an

5

algorithm is designed to solve the optimal edge selection problem efficiently. Running

the optimal edge selection algorithm finds an optimal set of edges (dependences) and the

corresponding maximal benefit from value speculation. Examining the selected

dependences provides insights into the instruction selection techniques that relate to the

success of utilizing value speculation to improve the performance of microprocessors.

Also, the optimal edge selection algorithm serves as a new compilation phase of benefit

analysis to expose selected dependences to dynamically-scheduled and statically-

scheduled machines. The compiler-directed edge selection can alleviate the burden for

the hardware to decide which dependences should be broken at run-time.

Software-only value speculation scheduling (SVSS) is proposed and can be

applied to existing microprocessors for improving the performance. The SVSS scheme

utilizes software static stride value predictors to generate value predictions, so that

dependent operations can be value-speculatively executed. The experimental results

show that the performance of the software static stride value predictor is comparable to

that of the hardware stride two-delta value predictor [10], [13]. Significant speedups are

shown for applying SVSS to the SPECint95 benchmarks.

To reduce the overhead of program profiling and eliminate the need of profile

training inputs, hardware-based value profiling is investigated to collect highly

predictable operations at run-time. The value predictor with additional tag and counter

fields is proposed as the scheme of hardware-based value profiling. At the retirement

stage, operations access the value predictor and update the tag and counter fields. Upon

context-switches or interrupts, the tags with the maximum saturating counter values are

stored to the memory for recording highly predictable operations. From the experimental

6

results, the proposed scheme of hardware-based value profiling can accurately identify

highly predictable operations at run-time. The VSS optimization is experimented based

on the feedback from hardware-based value profiling.

1.2 Research Contributions

The research contributions of this thesis are as follows.

• This thesis proposes value speculation scheduling (VSS) to exploit the value

predictability of operations to improve the performance of microprocessors. The VSS

technique leverages advantages of both hardware schemes for value prediction and

compiler schemes for exposing ILP.

• Two new predicting and updating operations, LDPRED and UDPRED, are proposed

to be the interface between the value predictor and program code.

• A value speculation scheduling algorithm is proposed to utilize LDPRED and

UDPRED operations to break critical paths in a program to shorten execution time.

• A value speculation model is built as solving an optimal edge selection problem in a

data dependence graph to understand and improve the techniques for value

speculation.

• Three properties are observed from the optimal edge selection problem and help to

design an efficient optimal edge selection algorithm.

• Running the optimal edge selection algorithm serves as a new compilation phase of

benefit analysis to know how many optimization opportunities for value speculation

exist in a program and find an optimal set of edges (dependences) to be broken via

7

value prediction. The selected dependences are then exposed to the hardware or the

compiler to obtain maximal benefits from value speculation.

• Software-only value speculation scheduling (SVSS) is proposed and can be applied to

existing microprocessors for improving the performance.

• Software static stride value predictors are designed to have comparable performance

to hardware stride two-delta value predictors.

• Hardware-based value profiling is proposed to accurately collect highly predictable

operations at run-time with fewer overheads.

1.3 Outline of the Thesis

The organization of this thesis is as follows. Chapter 2 presents the techniques for

value speculation scheduling (VSS), including the microarchitectural support and the

VSS algorithm. Chapter 3 introduces the value speculation model by formally presenting

an optimal edge selection problem, and proposes an optimal edge selection algorithm.

Chapter 4 describes compiler-directed edge selection to expose selected dependences to

the hardware or the compiler. Chapter 5 proposes software-only value speculation

scheduling (SVSS) that can be applied to existing microprocessors. Chapter 6 studies the

profile shift and investigates hardware-based value profiling. Chapter 7 concludes this

thesis and mentions future research directions.

8

Chapter 2

Value Speculation Scheduling

Research in value prediction shows a surprising amount of predictability for the

values produced by register-writing operations [2], [3], [4], [6], [10], [13], [15], [16].

Several hardware-based schemes have been proposed to exploit this predictability by

eliminating flow dependences for highly predictable operations [2], [3], [6], [8], [9].

Instead of using hardware-only mechanisms for value speculation (e.g., the scheme in

Figure 1.1), this chapter introduces a combined hardware and compiler synergy that is

called value speculation scheduling (VSS). Static VLIW instruction scheduling

techniques are used to speculate value dependent operations by scheduling them above

the operations whose results they depend on. Value prediction hardware is used to

provide predicted values for allowing the execution of speculated operations to continue.

In the case of mispredicted values, control flow is redirected to recovery code so that the

execution can proceed with the correct results.

9

The remainder of this chapter is organized as follows. Section 2.1 presents the

microarchitectural support for value speculation scheduling (VSS). Section 2.2 examines

the value predictor design for VSS. Section 2.3 introduces the VSS algorithm. Section

2.4 presents experimental results and discusses the heuristics used in the VSS scheme.

Section 2.5 concludes this chapter.

2.1 Microarchitectural Support for VSS

Hardware pipeline stages for the VSS scheme are shown in Figure 2.1. Two new

predicting and updating operations, LDPRED and UDPRED, are introduced to be the

interface with the value predictor during the execution stage. An LDPRED operation

loads a predicted value generated by the value predictor into a specified general-purpose

register. A UDPRED operation updates the value predictor with the actual result,

resetting the device for future predictions after a misprediction. In Figure 2.1 of the VSS

scheme, the microprocessor only needs to add a new value predictor and slightly modify

the pipeline for accessing the value predictor at the execution stage. The non-intrusive

design makes it easy to incorporate the VSS scheme into future microprocessors.

 Figure 2.2 shows an example of using LDPRED and UDPRED operations to

perform the VSS optimization. In the original code sequence of Figure 2.2(a), operations

1 to 6 form a long flow dependence chain, which must be executed sequentially. If the

flow dependence from operation 3 to operation 4 is broken, via VSS, the dependence

height of the resulting dependence chain is shortened. Furthermore, ILP is exposed by

the resulting data dependence graph.

10

Figure 2.1 Pipeline stages of the VSS scheme. Two new operations, LDPRED and
UDPRED, are introduced to be the interface with the value predictor during the

execution stage.

(a) Original code

1: ADD R1 Ä R2, 5
2: SHL R3 Ä R1, 2
3: LW R4 Ä 0(R3)
4: ADD R5 Ä R4, 1
5: OR R6 Ä R5, R7
6: SW 0(R3) Ä R6
Next:

(b) New code after value speculation of R4 (the result of
operation 3)

1: ADD R1 Ä R2, 5
2: SHL R3 Ä R1, 2
3: LW R4 Ä 0(R3)
// load prediction from hardware into R8
7: LDPRED R8 Ä index
4’: ADD R5 Ä R8, 1
5’: OR R6 Ä R5, R7
6’: SW 0(R3) Ä R6
// verify prediction
8: BNE Recovery R8, R4
Next:

Recovery:
// update hardware predictor with R4
9: UDPRED R4, index
4: ADD R5 Ä R4, 1
5: OR R6 Ä R5, R7
6: SW 0(R3) Ä R6
10: JMP Next

Figure 2.2 An example of value speculation scheduling.

Fetch Dispatch Execute State-
Update

Value
Predictor

Predicted Value

LDPRED
UDPRED

11

Figure 2.3 shows the data dependence graphs for the code sequence of Figure 2.2

before and after breaking the flow dependence from operation 3 to operation 4. Assume

that the latencies of arithmetic, logical, branch, store, LDPRED, and UDPRED operations

are 1 cycle, and that the latency of load operations is 2 cycles. Then, the schedule length

of the original code sequence of Figure 2.3(a), operations 1 to 6, is seven cycles. By

breaking the flow dependence from operation 3 to operation 4, VSS results in a schedule

length of five cycles. Figure 2.3(b) illustrates the schedule now possible due to reduced

overall dependence height and ILP exposed in the new data dependence graph. This

improved schedule length, from seven cycles to five cycles, does not consider the penalty

associated with value misprediction due to the required execution of recovery code. The

impact of recovery code on performance will be discussed in Section 2.3.

In Figure 2.2(b), the value speculation scheduler breaks the flow dependence from

operation 3 to operation 4. Operations 4, 5 and 6 now form a separate dependence chain,

allowing their execution to be speculated during scheduling. They become operations 4’,

5’, and 6’ respectively. An operand of operation 4’ is modified from R4 to R8. Register

R8 contains the value prediction for destination register R4 of the predicted operation 3.

Operation 7, LDPRED, loads the value prediction for operation 3 into register R8. When

the prediction is incorrect (R8≠R4), operation 9, UDPRED, updates the value predictor

with the actual result of the predicted operation, from register R4. Note that the resulting

UDPRED operation is part of recovery code and its execution is only required when a

value is mispredicted. To ensure correct program execution, the compiler inserts the

branch (BNE), operation 8, after the store, operation 6’, to branch to recovery code when

the predicted value does not equal the actual value. The recovery code contains a

12

UDPRED operation and the original dependent operations 4, 5, and 6. After executing

recovery code, the program jumps to the next operation after operation 8 and execution

proceeds as normal. Note that in Figure 2.2(b) operations 4’, 5’, and 6’ use speculative

versions [41] of original operations 4, 5, and 6. If the store, operation 6, does not have

the speculative version, the compiler must not destroy data values belonging to other

memory locations, i.e. the memory address of the store must be non-speculative. As

shown in Figure 2.2(b), for aggressive optimization, the compiler may allow the store,

operation 6’, to save wrong data values to the memory location of 0(R3), which is non-

speculative.

Figure 2.3 Data dependence graphs for code in Figure 2.2. The numbers along each
edge represent the latency of each operation. In (a), the schedule length is seven

cycles. In (b), because of exposed ILP and dependence height reduction, the
schedule length is reduced to five cycles.

1

1

2

3

1

1

2

8

1

1

2

3

1

1

2

4

5

1

1

6

1

7

4’

5’

1

1

1

6’

1

1

1

(a) Before breaking dependence (b) After breaking dependence from operation
3 to operation 4

13

Each LDPRED and UDPRED pair that corresponds to the same value prediction

uses the same table entry index into the value predictor. Each index is assigned by the

compiler to avoid unnecessary conflicts inside the value predictor. While the number of

table entries is limited, possible conflicts are deterministic and can be factored into

choosing which values to predict in a compiler approach. A value predictor design,

featuring the new LDPRED and UDPRED operations, will be described in Section 2.2.

By combining hardware and compiler techniques, the strengths of both dynamic

and static techniques for exploiting ILP can be leveraged. We see several possible

advantages to VSS:

• Static scheduling provides a larger scheduling scope for exploiting ILP

transformations, identifying long dependence chains suitable for value prediction, and

then re-ordering code aggressively.

• Value-speculative dependent operations can be executed as early as possible before

the predicted operations that they depend on.

• The compiler controls the number of predicted values and assigns different indices to

them for accessing the prediction table. Only operations that the compiler deems are

good candidates for predictions are then predicted, reducing conflicts for the

hardware.

• Recovery code is automatically generated, reducing the need for elaborate hardware

recovery techniques.

• Instead of relying on statically predicted values (e.g., from profile data), LDPRED

and UDPRED operations access dynamic prediction hardware for enhanced

prediction accuracy.

14

• VSS can be applied to dynamically-scheduled (superscalar) processors, statically-

scheduled (VLIW) processors, or explicitly parallel instruction computing (EPIC)

processors [27], [28].

• The non-intrusive design for the VSS scheme makes it easy to employ value

prediction and value speculation in future microprocessors.

There is a drawback to the VSS scheme. Because static scheduling techniques are

employed, value-speculative operations are committed to be speculative and therefore

always require predicted values. Hardware-only schemes can dynamically decide when it

is appropriate to speculatively execute operations. The dynamic decision is based on the

value predictor’s confidence in the predicted value, avoiding misprediction penalties for

low confidence predictions.

2.2 Value Predictor Design

Microarchitectural support for value speculation scheduling (VSS) is in the form

of special-purpose value predictor hardware. Value prediction accuracy directly relates

to performance improvements for VSS. Various value predictors, such as last-value,

stride, context-based, two-level, and hybrid predictors, provide different prediction

accuracies [2], [3], [6], [10], [11], [13], [15], [16]. Value predictors with the most design

complexity, in general, provide for the highest prediction accuracy. In order to feature

LDPRED and UDPRED operations for VSS, previously proposed value predictors must

be re-designed slightly.

15

Figure 2.4 shows the block diagram of a value predictor that includes LDPRED

and UDPRED operations. In this value predictor, there are three fundamental units, the

current state block, the old state block, and the prediction hardware block. The current

state block may contain register values, finite state machines, history information, or

machine flags, depending on the prediction method employed. The old state block

hardware is a duplicate of the current state block hardware. The prediction hardware

block generates predictions with the input from the current state block. Various

prediction mechanisms can be used. For example, generating the prediction as the last

value (last value predictors [2], [3]). Or, generating the prediction as the sum of the last

value and the stride, which is the difference between the most recent last values (stride

predictors [4], [6], [10], [13]). Also, two-level value predictors [13] and context-based

value predictors [10], [11] allow for the prediction of recently computed values. For two-

level predictors, a value history pattern indexes a pattern history table, which in turn is

used to index a value prediction from recently computed values. Two-level value

prediction hardware is based on two-level branch prediction hardware.

Both the LDPRED and UDPRED operations contain an immediate operand that

specifies the value predictor table index. In general (independent of the prediction

hardware chosen) the LDPRED operation performs three actions. The compiler assigned

number indexes each action. First, the prediction hardware generates the predicted value

by using the input from the current state block. Second, current state information is

shifted to the old state block. Last, the current state block is updated based on the

predicted value from the prediction hardware. Information used by the prediction

16

hardware is updated simultaneously with the current state block update. Note that for the

LDPRED operation, the predicted value is used to update the current state speculatively.

Figure 2.4 The block diagram of value predictor design featuring LDPRED and
UDPRED operations.

The compiler assigned number also indexes the operation of the UDPRED

operation. When the value prediction is incorrect, the recovery code in Figure 2.2(b)

must be executed. The execution of UDPRED operations only occurs in recovery code,

or only when values are mispredicted. The UDPRED operation causes the update of both

the current state block and the prediction hardware with the actual computed value and

the old state block.

If the compiler can ensure that each LDPRED and UDPRED pair is executed in

turn (each prediction is verified and value predictions are not nested), the old state block

Current State

Old State

Prediction
Hardware

Actual
Value
(UDPRED)

Index
(LDPRED,
UDPRED)

Index
(UDPRED)

Predicted
Value

LDPRED
UDPRED
Index

17

requires only one table entry. The same table entry in the old state block is updated by

every LDPRED operation, and used by every UDPRED operation, in the case of

misprediction.

In the VSS scheme, a prediction needs to be generated for each LDPRED

operation. There is no flag in the value predictor to indicate if a value prediction is valid

or not. The goal of the value predictor is to generate as many correct predictions as

possible. In Section 2.4, stride, two-level, and hybrid value predictors [13] are

implemented to find the design, which provides the highest prediction accuracy for use in

the VSS scheme. Stride predictors predict arrays and loop induction variables well.

Two-level predictors capture the recurrence of recently used values and generate

predictions based on previous patterns of values. However, neither of them alone can

obtain high prediction accuracy for all programs, which exhibit different characteristics.

Therefore, hybrid value predictors [13] consisting of both stride and two-level prediction

are designed to cover both of these situations. Figure 2.5 shows such a hybrid predictor

that obtains high prediction accuracy. The selection between the stride predictor and the

two-level predictor is different from that in [13]. Every table entry has a saturating

counter in the stride predictor and in the two-level predictor. The saturating counter

increases when its corresponding prediction is correct, and decreases when its prediction

is incorrect. Both saturating counters and predictors are updated for each prediction,

regardless of which prediction is actually selected. The hybrid predictor selects the

predictor with the maximum saturating counter value. In the event of a tie, the hybrid

predictor favors the prediction from the two-level predictor. Prediction accuracy results

for the three value predictors will be presented in Section 2.4.

18

Figure 2.5 The hybrid predictor (with stride and two-level predictors). Saturating
counters are compared to select between the prediction techniques.

2.3 A Value Speculation Scheduling Algorithm

Performance improvement for value speculation scheduling (VSS) is affected by

prediction accuracy, the number of saved cycles (from schedule length reduction), and

the number of penalty cycles (from execution of recovery code). Suppose that after

breaking a flow dependence, value-speculative dependent operations are speculated,

saving S cycles in overall schedule length when the prediction is correct. Recovery code

is also generated and requires P cycles. Prediction accuracy for the speculated value is X.

In this case, speedup may be positive if S > (1-X) * P holds. For the example of Figure

2.3(b), VSS saves 2 cycles (from 7 cycles to 5 cycles) and the resulting recovery code

contains 5 operations, requiring 3 cycles in an ILP processor. Therefore, for positive

speedup, the prediction accuracy must be at least 33%. If the actual prediction accuracy

Prediction

Index Stride
Predictor

2:1
MUX

Two-Level
Predictor

Counter for
Stride
Predictor

CMP
 (>)

Counter for
Two-Level
Predictor

19

is less, performance will be degraded by VSS. In Section 3.1, the penalties for value

misprediction in the VSS scheme will be discussed in more detail. With these

performance considerations in mind, an algorithm for VSS is proposed in Figure 2.6.

The first step is to perform value profiling. The scheduler must select highly

predictable operations to improve performance through VSS. Results from value

profiling under different inputs and parameters have been shown to be strongly correlated

[4], [7]. Therefore, value profiling can be used to select highly predictable operations on

which to perform value speculation.

Value profiling can be performed for all register-writing operations. If profiling

overhead is a concern, a filter may be used to perform value profiling only on select

operations. Select operations may be those that reside on critical paths (long dependence

heights) or those that have long latencies (e.g., load operations). In [7], estimating and

convergent profiling are proposed to reduce profiling overhead for determining the

invariance of operations. Similar techniques could be applied for determining the value

predictability of operations.

Next, the value speculation scheduler performs region formation. Treegion

formation [17] is the region type chosen for our experiments. A treegion is a non-linear

region that includes multiple execution paths in the form of a tree of basic blocks. The

larger scheduling scope of treegions allows the scheduler to perform aggressive control

speculation [41] and value speculation. A data dependence graph is then constructed for

each region.

In step four, a prediction accuracy threshold is used to determine whether or not

to perform value speculation on each operation. For each operation, the scheduler

20

queries the value profiling information to get the estimate of its predictability. If the

predictability estimate is greater than the threshold, value prediction is performed. For

aggressive scheduling, more operations can be speculated by choosing a low threshold.

Suggested values for the threshold are derived from experimental results in Section 2.4.

1. Perform value profiling

2. Perform region formation

3. Build a data dependence graph for a region

4. Select an operation with its prediction accuracy (based on value profiling) greater

than a threshold

5. Insert LDPRED after the predicted operation (the selected operation of step 4)

6. Change the source operand of the dependent operation(s) to the destination register

of LDPRED

7. Insert a branch to recovery code

8. Generate recovery code (which contains UDPRED)

9. Repeat steps 4 – 8 until no more candidates found

10. Update the data dependence graph for a region

11. Perform instruction scheduling for a region

12. Repeat steps 2 – 11 for each region

Figure 2.6 A value speculation scheduling algorithm.

When an operation is selected for value prediction, an LDPRED operation is

inserted directly after it. The LDPRED operation has an immediate value that is assigned

by the scheduler to be its chosen index into the value predictor. A new register is also

assigned as the destination of the LDPRED operation. Once the new destination register

has been chosen for the LDPRED operation, any dependent operation(s) may update their

source register(s) to reflect the new dependence on the LDPRED operation. Only the

first dependent operation in a chain of dependent operations needs to update its register

source, the remaining dependencies in the chain are unaffected. Even though more than

21

one chain of dependent operations may result from just one value prediction, only one

LDPRED operation is needed for each value prediction.

In step seven, a branch to recovery code is inserted for repairing value

misprediction. Only one branch per data value prediction is required and the scheduler

determines where this branch is inserted. Once the location of the branch is set, all

operations in all dependence chains between the predicted operation and the branch to

recovery code are candidates for value-speculative execution. It is therefore desirable to

schedule any of these operations above the predicted operation. Actual hardware

resources will restrict the ability to speculatively execute these candidates for value

speculation. Also, as all candidates for value speculation are duplicated in recovery code,

their number directly affects the penalty for value misprediction. These factors affect the

scheduler’s decision on where to place the branch to recovery code. Moreover, the

compiler needs to make sure that all source operands (e.g., register values and memory

data values) of candidate operations between the predicted operation and the branch are

protected, so that inside recovery code value-speculative operations can be re-executed

with original operands in the case of value misprediction.

In step eight, recovery code is created for repairing value misprediction. The

recovery code contains the UDPRED operation, a copy of each candidate for value-

speculative execution, and an unconditional jump back to the operation following the

branch to recovery code. The UDPRED operation uses the same immediate value,

assigned by the scheduler, as its corresponding LDPRED operation for indexing the value

predictor. The other source operand for the UDPRED operation is the destination register

22

of the predicted operation (the actual result of the predicted operation). The UDPRED

operation index and the actual result are used to update the value predictor.

Finally, in steps ten and eleven, the data dependence graph is updated to reflect

the changes and instruction scheduling for the region is performed. Because of the

machine resource restrictions and dependences, not all candidates for value speculation

are speculated above the predicted operation. Section 2.4 shows the results of using

different threshold values for determining when to do value speculation.

2.4 Experimental Results

The SPECint95 benchmark suite was used in the experiments. All programs were

compiled with classic optimizations by the IMPACT compiler from the University of

Illinois [18] and converted to the Rebel textual intermediate representation by the Elcor

compiler from Hewlett-Packard Laboratories [19]. Then, the LEGO compiler, a research

compiler developed at North Carolina State University, was used to insert profiling code,

form treegions, and schedule operations [17]. After instrumentation for value profiling,

intermediate code from the LEGO compiler was converted to C code. Executing the

resultant C code generated profiling data.

For the experiments in value speculation scheduling, load operations were filtered

as targets for value speculation. Load operations were selected because they are usually

on critical paths and have long latencies. Value profiling for load operations was

performed on all programs. Table 2.1 shows the statistics from these profiling runs. The

number of total profiled load operations represents the total number of load operations in

each benchmark, as all load operations are instrumented (profiled). The number of static

23

load operations represents the number of load operations that are actually executed. The

difference between total profiled and static load operations is the number of load

operations that are not visited. The number of dynamic load operations is the total of

each load operation executed multiplied by its execution frequency.

Table 2.1 Statistics of total profiled, static and dynamic load operations.

SPECint95 Total Profiled

Load Operations

Static Load

Operations

Dynamic Load

Operations

099.go 7,702 6,370 86,613,967

124.m88ksim 2,954 747 15,765,232

126.gcc 35,948 17,418 132,178,579

129.compress 96 72 4,070,431

130.li 1,202 414 24,325,835

132.ijpeg 5,104 1,543 118,560,271

134.perl 6,029 1,429 4,177,141

147.vortex 16,587 10,395 527,037,054

Stride, two-level, and hybrid value predictors were simulated during value

profiling to evaluate prediction accuracy for each load operation. During value profiling,

after every execution of a load operation, the simulated prediction is compared with the

actual value to determine prediction accuracy. The value predictor simulators are

updated with actual values, as they would be in hardware, to prepare for the prediction of

the next use. Since the goal of value profiling is to measure the potential prediction

accuracy of operations rather than the required capacities of the hardware buffers, no

index conflicts between operations are modeled.

Each entry in the stride value predictor [4], [10], [13] has two fields, the stride

and the current value. The prediction is always the current value plus the stride. The

24

stride equals the difference between the most recent current values. The stride value

predictor always generates a prediction. No finite state machine hardware is required to

determine if a prediction should be used.

The two-level value predictor design is as in [13], with four data values and six

outcome value history patterns in the value history table of the first level. The value

history patterns index the pattern history table of the second level. The pattern history

table employs four saturating counters, used to select the most likely prediction amongst

the four data values. The saturating counters in the pattern history table increase by

three, up to twelve, and decrease by one, down to zero. Selecting the data value with the

maximum saturating counter value always generates a prediction.

The hybrid value predictor of stride and two-level value predictors utilizes the

previous description illustrated earlier in Figure 2.5. In the hybrid design, the saturating

counters, used to select between stride and two-level prediction, also increase by three, up

to twelve, and decrease by one, down to zero.

Figure 2.7 shows the prediction accuracy of load operations under stride, two-

level, and hybrid predictors. The prediction accuracy of the two-level predictor is higher

than that of the stride predictor for all benchmarks except 129.compress and 132.ijpeg.

However, the average prediction accuracy for the stride predictor is higher than that for

the two-level predictor because of the large performance difference in 129.compress.

Examining the value trace for 129.compress shows many long stride sequences that are

not predicted correctly by the history-based two-level predictor. The hybrid predictor,

capable of leveraging the advantages of each prediction method, has the highest

prediction accuracy of 63% on an average across all benchmarks.

25

Prediction Accuracy of Load Operations Using Stride, Two-level, and Hybrid Value
Predictors

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

09
9.

go

12
4.

m
88

ks
im

12
6.g

cc

12
9.c

om
pre

ss
13

0.l
i

13
2.i

jp
eg

13
4.p

er
l

14
7.v

orte
x

Arit
hm

et
ic

Mea
n

SPECint95

A
cc

u
ra

cy
Stride Two-Level Hybrid

Figure 2.7 Prediction accuracies of load operations using stride, two-level, and
hybrid predictors.

Figures 2.8 and 2.9 show the prediction accuracy distribution for load operations

using the hybrid predictor. Figure 2.8 is the distribution for static load operations and

Figure 2.9 is the distribution for dynamic load operations. For 124.m88ksim, 45% of the

static load operations have prediction accuracies 90%, representing 90% of the dynamic

load operations. For 129.compress, 70% of the static load operations have prediction

accuracies of 90%, accounting for 80% of dynamic load operations. These static load

operations are excellent candidates for VSS. Such high prediction accuracy results in low

overhead due to the execution of recovery code. However, for benchmarks 099.go and

132.ijpeg respectively, only 15% and 25% of dynamic load operations have prediction

accuracies above 50%. Therefore, they will not gain much performance from VSS.

26

The VSS algorithm shown in Figure 2.6 was performed on all SPECint95

programs. Prediction accuracy threshold values of 90%, 80%, 70%, 60% and 50% were

evaluated. The number of candidates for value-speculative execution was limited to three

for each value prediction. This parameter was varied in our evaluation, with the value of

three providing good results.

For the evaluation of the speedup, a very long instruction word (VLIW)

architecture machine model based on the Hewlett-Packard Laboratories HPL-PD

architecture [20] was chosen. One cycle latencies are assumed for all operations

(including LDPRED and UDPRED) except for load (two cycles), floating-point add (two

cycles), floating-point subtract (two cycles), floating-point multiply (three cycles), and

floating-point divide (three cycles). The LEGO compiler statically schedules the

SPECint95 programs. The scheduler uses treegion formation [17] to increase the

scheduling scope by including a tree-like structure of basic blocks in a single, non-linear

region. The compiler performs control speculation [41], which allows operations to be

scheduled above branches. Universal functional units that execute all operation types are

assumed. An eight universal unit (8-U) machine model was used. All functional units

are fully pipelined, with an integer latency of 1 cycle and a load latency of 2 cycles.

Program execution time is measured by using the schedule length of each region and its

execution profile weight. The effects of instruction cache and data cache are ignored, and

perfect branch prediction is assumed in an effort to determine the maximum potential

benefits of VSS.

27

Figure 2.8 The prediction accuracy distribution for static load operations using the
hybrid predictor.

Figure 2.9 The prediction accuracy distribution for dynamic load operations using
the hybrid predictor.

Hybrid Predictor

0

10

20

30

40

50

60

70

80

90

100

≥90% ≥80% ≥70% ≥60% ≥50% ≥40% ≥30% ≥20% ≥10% ≥0%

Prediction Accuracies

P
er

ce
n

ta
g

e
o

f
D

yn
am

ic
 L

o
ad

 (
%

)

099.go

124.m88ksim

126.gcc

129.compress

130.li

132.ijpeg

134.perl

147.vortex

Hybrid Predictor

0

10

20

30

40

50

60

70

80

90

100

≥90% ≥80% ≥70% ≥60% ≥50% ≥40% ≥30% ≥20% ≥10% ≥0%

Prediction Accuracies

P
er

ce
n

ta
g

e
o

f
S

ta
ti

c
L

o
ad

 (
%

)

099.go

124.m88ksim

126.gcc

129.compress

130.li

132.ijpeg

134.perl

147.vortex

28

Figure 2.10 shows the execution time speedup of programs scheduled with VSS

over without VSS. Five different prediction accuracy thresholds were used to select

which load operations are value speculated. The maximum speedup for all benchmarks is

17% for 147.vortex. As illustrated in Figure 2.9, 147.vortex has many dynamic load

operations that are highly predictable. While 147.vortex does not have the highest

predictability for load operations, the sheer number, as illustrated in Table 2.1, results in

the best performance. Benchmarks 124.m88ksim and 129.compress also show

impressive speedups, 10% and 11.5% respectively, using a threshold of 50%. Speedup

for 124.m88ksim actually goes up, even as the prediction accuracy threshold goes down,

from 90% to 50%. This result can be deduced from the distribution of dynamic loads.

For 124.m88ksim, there is a steady increase in the number of dynamic loads available as

the threshold decreases from 90% to 50%. There is a tapering off in speedup though, as

more mispredictions are seen near a threshold of 50%. For 129.compress, the step in the

distribution of dynamic loads from 80% to 70% is reflected in a corresponding step in

speedup. Performance gains for 126.gcc are more reflective of the large number of

dynamic load operations than of their predictability. Penalties for misprediction at the

lower thresholds reduce speedup for 126.gcc. Benchmark 130.li, with a distribution of

dynamic loads similar to 126.gcc, has lower performance due to fewer dynamic loads.

Benchmark 134.perl clearly suffers from not having many dynamic loads. Benchmarks

099.go and 132.ijpeg do not have good predictability for load operations.

Based on these performance results, a predictability threshold of 70% appears to

be a good selection. From the distribution of predictability for dynamic loads in Figure

2.9, a threshold 70% includes a large majority of the predictable dynamic loads.

29

Choosing a threshold of predictability lower than 70% results in a tapering off in

performance for some benchmarks. This is due to both higher penalties for value

misprediction and saturation of functional unit resources, resulting in fewer saved

execution cycles.

The Execution Time Speedup on 8U Machine Model

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pre

ss

13
0.l

i

13
2.i

jp
eg

13
4.p

er
l

14
7.v

orte
x

SPECint95

S
p

ee
d

u
p

90% 80% 70% 60% 50%

Figure 2.10 The execution time speedup for programs scheduled with VSS over
without VSS. Prediction accuracy threshold values of 90%, 80%, 70%, 60% and

50% are used.

2.5 Summary

This chapter presents value speculation scheduling (VSS), a new technique for

exploiting the value predictability of register-writing operations. This technique

leverages advantages of both hardware schemes for value prediction and compiler

30

schemes for exposing ILP. Dynamic value prediction is used to enable aggressive static

schedules in which value dependent operations are speculated. In this way, VSS can be

thought of as static ILP transformation that relies on dynamic value prediction hardware.

The results for VSS presented in this chapter are impressive, especially when considering

that only load operations are considered for value speculation. Chapter 3 will introduce a

value speculation model to understand and improve the techniques for value speculation.

By using the value speculation model, all true dependences among operations are

considered for value prediction to obtain maximal benefits from value speculation.

31

Chapter 3

Modeling Value Speculation

Techniques for value speculation have been proposed for dynamically-scheduled

machines [2], [3], [6], [8], [9], [22], [23], [26] and statically-scheduled machines [22],

[23], [24], [25] to increase instruction-level parallelism by breaking flow (true)

dependences and allowing value-dependent operations to be executed speculatively.

Researchers have published many papers on designing value predictors yielding very

high prediction accuracies [10], [11], [13], [15], [16]. Recently, the focus has shifted to

the instruction selection techniques that choose important producer and consumer

instructions for value prediction [8], [9], [24], [26]. The reason is that the effectiveness

of value speculation relies not only on the predictability of operations, but also on the

ability to shorten overall execution time, while encountering penalties for value

misprediction. Several heuristics have been proposed to select operations for value

prediction [8], [9], [24], [26], such as predicting operations at the top or in the middle of

32

critical paths. However, it is unknown whether these heuristics do a good job of

obtaining maximal benefits from value speculation.

To understand and improve the techniques for value speculation, we model value

speculation as an optimal edge selection problem. Edges represent dependences between

operations in a data dependence graph. The optimal edge selection problem involves

finding an optimal (minimal) set of edges to break that achieves maximal benefits from

value speculation, while taking the penalties for value misprediction into account. Based

on three properties observed from the optimal edge selection problem, an efficient

algorithm is designed using the techniques of branch-and-bound and memoization (a

variation of dynamic programming) [21]. After running the optimal edge selection

algorithm, several experimental results of modeling value speculation are presented in

this chapter, including:

• The maximal benefits from value speculation on the 20 most heavily executed paths

in the SPECint95 benchmarks.

• The impact of different penalties for branch misprediction on the benefits.

• The value prediction accuracy distribution and the location distribution of an optimal

set of edges (dependences).

• The location distribution of the selected producer and consumer operations.

• The top five opcodes of the selected producer and consumer operations.

The remainder of this chapter is organized as follows. Section 3.1 briefly

introduces different techniques for value speculation. Section 3.2 presents an optimal

edge selection problem formally. Section 3.3 describes three properties observed from

the optimal edge selection problem. Section 3.4 presents an optimal edge selection

33

algorithm, with experimental results shown in Section 3.5. Section 3.6 concludes this

chapter.

3.1 Introduction of Value Speculation

The techniques for value speculation in dynamically-scheduled and statically-

scheduled machines are introduced as follows. In dynamically-scheduled machines [2],

[3], there is an instruction window that maintains a pool of instructions waiting to be

executed. All instructions in the instruction window dynamically form a data dependence

graph. Without the value prediction technique, the dynamic scheduler selects an

instruction to execute only if all of its operands are ready. However, by using value

prediction to break flow dependences, the original data dependence graph can be

collapsed and instructions can be speculatively executed even if their operands are not

ready. Speculatively executed instructions must wait for verifying predicted values

before their retirement. In the case of value misprediction, recovery mechanisms are

required to re-execute instructions with correct operands. One recovery scheme utilizes

the branch misprediction handling hardware [8] that is already in the dynamically-

scheduled machine. All instructions following the incorrectly predicted instruction are

re-fetched and re-executed. Another recovery mechanism is the selective re-issuing

scheme [2], [3] to re-execute dependent instructions that are affected by incorrect

predictions. The implementation of the selective re-issuing scheme is more complicated

than that of the branch misprediction handling hardware.

For statically-scheduled machines, the compiler is responsible for forming a

region of code and building the data dependence graph for all operations inside the

34

region. The scheduler must honor all dependences among operations to generate a

correct schedule. With the help of value prediction and value speculation, the scheduler

can break true dependences and speculatively schedule value-dependent operations. The

compiler inserts predicting operations, LDPRED [22], to load a prediction from the value

predictor, and verifying operations, BNE (branch if not equal) [22], to compare the

predicted value with the actual result. In the case of value misprediction, the compiler

can provide recovery code [22] for re-executing operations, or advanced hardware can

generate recovery code on the fly and execute recovery code on a separate compensation

engine [25].

The challenge for value speculation is the combination of breaking true

dependences among all dependences in the data dependence graph to reduce overall

execution time, while also considering penalties resulting from value misprediction and

the side effect of value-speculative execution. The penalties may include cycles for

verifying value prediction, re-executing operations, I-Cache stalls due to re-fetching

operations and aggressive speculative execution, D-Cache stalls due to more executed

memory operations, and structural hazards [3] that come from the competition for

machine resources (e.g., functional units, entries in the branch predictor) by non-

speculative and speculative operations. Different recovery techniques for dynamically-

scheduled and statically-scheduled machines have different penalties for value

misprediction and value-speculative execution. The penalties under different recovery

techniques for value speculation are compared in Table 3.1.

35

Table 3.1 Penalties under different recovery techniques for value speculation.

Dynamically-Scheduled Machines Statically-Scheduled Machines Recovery

Techniques Branch

Misprediction

Handling

Hardware [8]

Selective Re-

issuing [2], [3]

Compiler-

Generated

Recovery Code

[22]

Hardware-

Generated

Recovery

Code [25]

Penalties for

Verifying Value

Prediction

1 cycle (for

comparing actual

and predicted

values) always

+

Flushing all

pipeline stages

when value is

mispredicted

1 cycle (for

comparing actual

and predicted

values) always

1 cycle (for

comparing actual

and predicted

values) always

+

Flushing all

pipeline stages

when the BNE

operation is

mispredicted

1 cycle (for

comparing

actual and

predicted

values) always

Penalties for

Re-execution

Re-executing all

operations when

value is

mispredicted

Re-executing

only affected

operations when

value is

mispredicted

Re-executing

only affected

operations when

value is

mispredicted

Re-executing

only affected

operations

when value is

mispredicted

(on a separate

engine)

I-Cache Stalls Re-fetching all

operations when

value is

mispredicted

+

Side effect of

speculative

execution

Side effect of

speculative

execution

Fetching

recovery code

when value is

mispredicted

+

Side effect of

speculative

execution

Side effect of

speculative

execution

D-Cache

Stalls,

Structure

Hazards

Side effect of

speculative

execution

Side effect of

speculative

execution

Side effect of

speculative

execution

Side effect of

speculative

execution

36

As shown in Table 3.1, the scheme of compiler-generated recovery code for

statically-scheduled machines has the penalties of one cycle for verifying the predicted

value, the flushing cycles after the verifying operation (BNE) is mispredicted, the cycles

for executing recovery code, additional I-Cache stalls for fetching recovery code, and

extra stalls due to the impact of speculative execution on the I-Cache, D-Cache, and

machine resources. In Table 3.1, some items of penalties are the same under different

recovery mechanisms, but others are different.

3.2 An Optimal Edge Selection Problem

3.2.1 Terminology of Data Dependence Graphs

In related work [14], a dynamic data dependence graph is utilized to study the

available parallelism with data value prediction. For modeling value speculation, the data

dependence graph is heavily used as well. Terminology required on the data dependence

graph is introduced as follows.

The data dependence graph that is formed in the instruction window or generated

by an acyclic code scheduler is a directed acyclic graph (DAG). The data dependence

graph is denoted by DDG=(N, E), where N is the set of Nodes representing operations

and E is the set of Edges representing dependences between operations. For an edge Ei,

Source(Ei) is the source node of the edge Ei and Sink(Ei) is the sink node of the edge Ei.

The types of edges include register flow (true) dependences, register anti- (false)

dependences, register output (false) dependences, memory dependences, and control

dependences [19]. Edges that are flow dependence types are candidates for the value

speculation techniques to break. Each edge has a latency based on the dependence type.

37

Register flow and output dependences have latencies equal to the latencies of source

operations. Register anti-, memory, and control dependences have latencies of zeros.

Each node has a Height, which is the latest scheduled cycle without delaying

other operations. A top-down depth-first-search (DFS) algorithm [21] shown in Figure

3.1 can compute heights of all nodes in a data dependence graph. The running time of

computing heights is O(|N| + |E|), where |N| is the number of nodes and |E| is the number

of edges. The node also has a Depth, which is the earliest scheduled cycle of the

operation. Depths are calculated by a bottom-up DFS algorithm, very similar to the

algorithm shown in Figure 3.1. Only heights are used in this chapter. The maximal

height of all nodes in the DDG represents the minimal cycles to execute or schedule all

operations in the DDG. It is denoted by |DDG|, and called the Length or the Height of

the DDG.

A Critical Path is the longest path from the starting nodes (of height 0) without

predecessors to the ending nodes without successors in a data dependence graph. Based

on the heights of nodes in the DDG, the critical path can be found using the algorithm

shown in Figure 3.2. The algorithm of finding the critical path is similar to DFS, so its

running time is O(|N| + |E|). The length of the critical path equals the length of the DDG

(=|DDG|). Figure 3.3 shows examples of data dependence graphs with nodes that are laid

out by heights and with edges that can be any dependence type. The critical path in the

data dependence graph shown in Figure 3.3 consists of thick edges and thick-circled

nodes.

38

// Compute heights of all nodes in a DDG

Compute_Height(DDG)
{
 // Step 1. Reset height of nodes and length of DDG.
 DDG->length = -1;
 For each node in DDG {
 node->height = -1;
 }

 // Step 2. Compute height
 for each node in DDG {
 height = Compute_Height(node);
 if(height > DDG->length) {
 DDG->length = height;
 }
 }

 // Step 3. Reverse heights of all nodes, so heights are the
 // latest scheduled cycle.
 for each node in DDG {
 node->height = DDG->length – node->height;
 }
}

// Compute height of this node
int Compute_Height(node)
{
 // Step 1. If node has height, return its height.
 If (node->height != -1) {
 return node->height;
 }

 // Step 2. Get the max height from its successors.
 max_height = 0;
 for each succ_edge of node {
 sink_node = succ_edge->sink;
 succ_height = Compute_Height(sink_node);
 new_height = succ_height + succ_edge->latency;
 if(new_height > max_height) {
 max_height = new_height;
)
 }

 if node has no succ_edge
 node->height = node->op->latency;
 else
 node->height = max_height;

 return node->height;
}

Figure 3.1 An algorithm of computing heights of all nodes in a data dependence
graph.

39

// Find all critical paths in a DDG

Find_Critical_Path(DDG)
{
 // Step 1. Compute heights of nodes in the DDG.
 Compute_Height(DDG);

 // Step 2. Reset critical attributes of nodes and edges.
 for each node in DDG {
 node->critical = false;

 for each succ_edge of node {
 succ_edge->critical = false;
 }
 }

 // Step 3. Find critical paths from nodes with height 0.
 for each node in DDG {
 if (node->height == 0) {
 node->critical = true;
 Find_Critical_Path(node);
 }
 }
}

// Find critical path starting from node

Find_Critical_Path(node)
{
 for each succ_edge of node {
 sink_node = succ_edge->sink;

 if (sink_node->height == (node->height + succ_edge->latency)) {
 succ_edge->critical = true;

 if(sink_node->critical == false) {
 sink_node->critical = true;
 Find_Critical_Path(sink_node);
 }
 }
 }
}

Figure 3.2 An algorithm of finding critical paths in a data dependence graph.

40

Figure 3.3 (a) A data dependence graph. (b) A modified data dependence graph
after performing the value speculation transformation on E2 (from node 8 to node

10). Thick edges and thick-circled nodes are on the critical path.

3.2.2 The Problem Statement

The model of value speculation is best illustrated by an example. For the data

dependence graph shown in Figure 3.3(a), one edge E2, from node 8 to node 10, is

selected by the value speculation technique. In Figure 3.3(b), the value speculation

transformation is performed, including breaking the edge E2 (from node 8 to node 10),

adding one predicting node 21 (LDPRED), adding one verifying node 22 (BNE), adding

one edge E8 (from node 21 to node 10), adding one edge E9 (from node 21 to node 22),

and adding one edge E10 (from node 8 to node 22). The predicting node loads a

prediction from a value predictor, and feeds its result to node 10. The verifying node

compares the predicted value from the predicting node and the actual result of node 8.

Height
0

1

2

3

4

|DDG0| = 5 |DDG1| = 4

17

8

11 12 7

10 7

21

22

(a) (b)

8

10

17

11 12

Height
0

1

2

3

4

5

E1

E2

E3

E5

E6

E7

E1

E5

E6

E7

E3

E8

E10

E9

E4

E4

41

Note that the predicting and verifying nodes are explicit in statically-scheduled machines,

but are implicit in dynamically-scheduled machines.

In Figure 3.3(a), the length of the DDG is 5 cycles. In Figure 3.3(b), after

performing the value speculation transformation, the length of the modified DDG is

reduced to 4 cycles. The modified DDG, denoted by DDGn, is obtained after performing

the value speculation transformation on n edges in the original DDG. The original DDG

without performing the value speculation transformation on any edge is DDG0.

In the case of value misprediction, penalties are incurred for recovery. The total

penalty for mispredicting node Ni is denoted by Penalty(Ni). It is assumed to be greater

than zero. Based on Penalty(Ni), the penalty for mispredicting edge Ei, Penalty(Ei), is

defined as follows:

Penalty(Ei) =




 already. predicted been has Eof node source theif 0,

 yet.predicted beennot has Eof node source theif)),urce(EPenalty(So

i

ii

Because Penalty(Ni) is counted at most once in the proposed model, if the source

node of Ei has not been predicted yet, Penalty(Ei) equals Penalty(Source(Ei)) after

performing the value speculation transformation on the edge Ei. Otherwise, Penalty(Ei) is

zero. Note that in the latter case of Penalty(Ei) equal to zero, the predicting node, the

verifying node, and some new edges have been created already, so the value speculation

transformation includes only breaking the selected edge and adding one edge from the

predicting node to the sink node of the selected edge.

42

For an acyclic data dependence graph DDG=(N, E), find a minimal set of edges as {E1,

E2, …, En-1, En}, such that the benefit is maximal (and must be greater than zero) by

performing the value speculation transformation on selected edges. The benefit for the

DDG is defined as follows.

Benefit(DDG) = Benefit(DDG0)

 = Execution_cycles_of_DDG0 - Execution_cycles_of_DDGn

 = |DDG0| - (|DDGn| + ∑
=

n

i 1

Penalty(Ei))

 = (|DDG0| - |DDGn|) - ∑
=

n

i 1

Penalty(Ei)

 = Cycle_savings – Misprediction_penalties

where

Penalty(Ni) > 0 for all nodes,

Penalty(Ei) =




 already. predicted been has Eiof node source theif 0,

 yet.predicted beennot has Eiof node source theif urce(Ei)),Penalty(So

Figure 3.4 An optimal edge selection problem.

Penalty(Ni) = Value_misprediction_rate * Cycles_of_recovery_code +

 BNE_branch_misprediction_rate * Stall_cycles_of_mispredicted_branch

where

Cycles_of_recovery_code = |DDG0| – Height (Ni),

Stall_cycles_of_mispredicted_branch = 2, 5, or 10,

Value misprediction rates and BNE branch misprediction rates come from profile results.

Figure 3.5 Penalties of nodes.

43

Using the introduced terminology, value speculation is modeled as an optimal

edge selection problem that is formally presented in Figure 3.4. The optimal edge

selection problem asks for finding a minimal set of edges such that the benefit is maximal

(and must be greater than 0) by performing the value speculation transformation on

selected edges.

Some assumptions and limitations of the proposed value speculation model are as

follows:

• The data dependence graph must be a directed acyclic graph (DAG). The DDG is

constructed for operations in the instruction window of dynamically-scheduled

machines, or for operations in a linear path (trace) of basic blocks in a program for

statically-scheduled machines.

• The selected edge must belong to the original set of edges, and must be a flow (true)

dependence type.

• In the optimal edge selection problem, the latencies of edges and the penalties for

mispredicting nodes must be known beforehand and fixed all the time. In this

chapter, the value speculation technique on a statically-scheduled machine with

compiler-generated recovery code is experimented. According to Table 3.1, the

penalties for mispredicting nodes are modeled by the equation in Figure 3.5. (The

penalties in other recovery schemes shown in Table 3.1 can be modeled as well.)

Note that the one-cycle penalty for comparing the predicted value with the actual

result does not appear in the equation, because the verifying node has already been

inserted in the data dependence graph. The penalties of the I-Cache stalls, D-Cache

44

stalls, and structural hazards are ignored. In the equation, the value misprediction

rates and the BNE branch misprediction rates come from profile results.

• Machine resources are not taken into account in the optimal edge selection problem.

Unlimited resources are assumed to be available for the value speculation techniques.

• In dynamically-scheduled machines, instructions shift into and out of the instruction

window every cycle. However, the proposed value speculation model focuses only

on a static data dependence graph that is composed of the instructions in the current

instruction window.

3.3 Three Properties Observed from the Optimal Edge
Selection Problem

 The optimal edge selection problem presented in Figure 3.4 can be solved by a

brute-force method that measures the benefits of all possible edge selections. For |E|

edges, the brute force method must try 2|E| combinations. However, from observing the

optimal edge selection problem, there exist some properties for us to design an efficient

algorithm.

The first observation is that because the process of the value speculation

transformation is deterministic, the final DDGn should be the same regardless of the order

of the value speculation transformation performed on the selected edges in the DDG0.

Therefore, the computation of the benefit on all selected edges can be decomposed into

calculating the benefit difference of each selected edge. Property 1 is shown in Figure

3.6, and its proof appears as follows.

45

Property 1: Decomposition

Let Benefit_Difference(Ei) = |DDGi-1| - |DDGi| - Penalty(Ei). Then, for a set of edges

{E1, E2, …, En-1, En}, the benefit for the DDG0 is the summation of all benefit

differences.

Figure 3.6 Property 1 of the optimal edge selection problem: decomposition.

Proof of Property 1:

For the presentation, the index of the edges {E1, E2, …, En-1, En} is coincidently the same

as the order when they are selected. The benefit for the DDG0 after performing the value

speculation transformation on {E1, E2, …, En-1, En} is denoted by

Benefit(DDG0)

= (|DDG0| - |DDGn|) - ∑
=

n

i 1

Penalty(Ei)

= (|DDG0| - |DDG1|) + (|DDG1| - |DDG2|) + … + (|DDGn-1| - |DDGn|) - ∑
=

n

i 1

Penalty(Ei)

= (|DDG0| - |DDG1| - Penalty(E1)) + (|DDG1| - |DDG2| - Penalty(E2)) + … + (|DDGn-1| -

|DDGn| - Penalty(En))

= ∑
=

n

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei))

= ∑
=

n

i 1

Benefit_Difference(Ei). #

The second observation is the optimal substructure [21] of the optimal edge

selection problem. For the data dependence graph shown in Figure 3.3(a), if the set of

{E2, E5} is an optimal solution for the DDG0, after performing the value speculation

46

transformation on {E2}, {E5} will be an optimal solution for the DDG1 shown in Figure

3.3(b). (Note that for the modified DDG, we restrict that the candidate edge must still

belong to the original set of edges in the DDG0, and must be a true dependence type.)

Property 2 is shown in Figure 3.7, and its proof appears as follows.

Property 2: Optimal Substructure

For an optimal set of edges {E1, E2, …, En-1, En} for the DDG0, after performing the

value speculation transformation on a subset of optimal edges, the remaining edges in

the optimal set of edges is an optimal solution for the modified DDG. So, the problem

of each modified DDG is also an optimal edge selection problem.

Figure 3.7 Property 2 of the optimal edge selection problem: optimal substructure.

Proof of Property 2: (By Contradiction)

Because {E1, E2, …, En-1, En } is an optimal solution for the DDG0, {E1, E2, …, En-1, En }

should be the minimal set of edges that yield the highest positive benefit for the DDG0.

Without loss of generality, {E1, E2, …, En-1, En} is split into two sets of edges, {E1, E2,

…, Ek} and {Ek+1, …, En-1, En}. For the presentation, the index of the edges {E1, E2, …,

En} is coincidently the same as the order when they are selected. From Property 1, the

maximal benefit for the DDG0 is denoted by Benefitold(DDG0)

= ∑
=

n

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei))

= ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) + ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei)).

47

Let Benefitold(DDGk) = ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei)). Then,

Benefitold(DDG0) = ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) + Benefitold(DDGk).

Property 2 states that {Ek+1, …, En-1, En} must be an optimal solution for the DDGk. We

will prove it by the following four cases.

Case 1. If we assume that {Ek+1, …, En-1, En} does not yield the highest benefit for the

DDGk, one new Benefitnew(DDGk) can be found to be higher than the Benefitold(DDGk).

Adding ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) and the Benefitnew(DDGk) together, one

new Benefitnew(DDG0) can be found to be higher than the Benefitold(DDG0). This

contradicts that the Benefitold(DDG0) should be maximal. Therefore, we cannot find

other set of edges for the DDGk to have higher benefits than ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| -

Penalty(Ei)).

Case 2. If we assume that {Ek+1, …, En-1, En} for the DDGk is not the minimal set of

edges that yield the maximal benefit (= Benefitold(DDGk)), a smaller set of edges {Ek’+1,

…, En’-1, En’} can be found to have the same benefit (=Benefitold(DDGk)). Combining

{E1, E2, …, Ek} and {Ek’+1, …, En’-1, En’} forms a smaller set of edges for the DDG0 that

yield the benefit equal to the Benefitold(DDG0). This contradicts that {E1, E2, …, En-1,

En} should be the minimal set of edges for the DDG0. Therefore, {Ek+1, …, En-1, En} is

the minimal set of edges that yield the maximal benefit (= Benefitold(DDGk)) for the

DDGk.

48

Case 3. If we assume that ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) is zero, performing value

speculation transformation on {E1, E2, …, Ek} for the DDG0 will obtain the benefits

= ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei))

= ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) + 0

= ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) + ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei))

= ∑
=

n

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei))

= Benefitold(DDG0).

{E1, E2, …, Ek} and {E1, E2, …, En-1, En} yield the same benefits. However, {E1, E2, …,

En-1, En} contains more edges than {E1, E2, …, Ek}. This contradicts that {E1, E2, …, En-

1, En} should be the minimal set of edges for the DDG0. Therefore, ∑
+=

n

ki 1

(|DDGi-1| -

|DDGi| - Penalty(Ei)) is not zero.

Case 4. If we assume that ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) is negative, performing

value speculation transformation on {E1, E2, …, Ek} for the DDG0 will obtain the benefits

= ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei))

> ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) + ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei))

= ∑
=

n

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) = Benefitold(DDG0).

49

{E1, E2, …, Ek} yields a higher benefit for the DDG0 than {E1, E2, …, En-1, En} does.

This contradicts that {E1, E2, …, En-1, En} should yield the highest benefit for the DDG0.

Therefore, ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) is not negative.

Summary: From the abovementioned four cases, we know that for the DDGk, {Ek+1, …,

En-1, En} is the minimal set of edges (from Case 2) that yield the highest (from Case 1)

and positive (from Case 3 and Case 4) benefit. Therefore, {Ek+1, …, En-1, En} is an

optimal solution for the DDGk. Also, any subset of optimal edges for the DDG0 is an

optimal solution for the corresponding modified DDG. So, the problem of each modified

DDG is also an optimal edge selection problem. #

 The third observation is that if an optimal solution (an optimal set of edges) exists

for the DDG0, there must be at least one edge from the optimal set of edges on the critical

path of the DDG0; otherwise the length of the critical path in the DDG0 will never be

shortened, and the overall benefit will never be greater than 0. From Property 2, the

problem of each modified DDG is also an optimal edge selection problem. So, based on

the same reason, there must be at least one optimal edge on the critical path in each

modified DDG. Property 3 is stated as follows and its proof stands from our discussion.

Property 3: Critical Edge Selection

For an optimal set of edges for the DDG0, there exists a sequence of edges, such that

each selected edge is on the critical path of each modified DDG.

Figure 3.8 Property 3 of the optimal edge selection problem: critical edge selection.

50

3.4 An Optimal Edge Selection Algorithm

3.4.1 The Algorithm

Based on the three properties introduced in Section 3.3, an optimal edge selection

algorithm shown in Figure 3.9 is designed using the techniques of branch-and-bound and

memoization (a variation of dynamic programming) [21]. The algorithm employs top-

down recursion to try different sets of edges. A selection table shown in Figure 3.10

records each edge selection and its corresponding benefit. In Figure 3.10, the first

selection entry contains an edge {E2} and its benefit is 0.995 cycles obtained by

performing the value speculation transformation on E2 in the data dependence graph

shown in Figure 3.3(a). The optimal edge selection algorithm needs to search the table to

know if the same edge selection has been tried already. Thus, the selection table is

managed as a hashed table to reduce the table lookup time. Hashing every id of selected

edges generates the table index. To reduce the memory space for storing the selection

entries, bit vectors can be used to record edges.

In Figure 3.9, the Optimal_Edge_Selection_Algorithm initializes the current

maximal benefit, current_max_benefit, to 0.0 and sets the best selection entry, best_se, to

NULL. The current_max_benefit indicates the maximal benefit that can be obtained for

the data dependence graph, ddg. The best_se maintains a linked list of edge selections

that yield the maximal benefits. After finding the critical paths in the ddg, the algorithm

calls the Selection_Algorithm with parameters of the ddg and the Selection_Entry *se that

points to the previous selection entry. The Selection_Algorithm contains a one-level loop

to iterate each candidate edge in the current ddg.

51

double current_max_benefit;
Selection_Entry *best_se;

Optimal_Edge_Selection_Algorithm(Data_Dependence_Graph *ddg)

{
 current_max_benefit = 0.0;
 best_se = NULL;
 Find_Critical_Path(ddg);
 Selection_Algorithm(ddg,NULL);
}
Selection_Algorithm(Data_Dependence_Graph *ddg, Selection_Entry *se)
{
 For each candidate edge in ddg
 {
 // Step 1. Filter candidate edges
 If edge is not on critical path of ddg, continue.
 If edge->sink_node->height is less than 2 or greater than
 (ddg->length)-2, continue.

 // Step 2. Generate a new edge selection
 new_edges = edge ∪ se->edges;
 If the selection table has an entry of new_edges already,
 continue.
 Get a new Selection_Entry *new_se from the selection table.
 new_se->edges = new_edges;

 // Step 3. Calculate benefit difference
 old_length = ddg->length;
 old_benefit = se->benefit;
 Perform value speculation transformation on edge in ddg.
 Find_Critical_Path(ddg);
 new_length = ddg->length;
 benefit_difference = (old_length - new_length) - penalty(edge);
 new_se->benefit = old_benefit + benefit_difference;
 Update current_max_benefit and best_se.

 // Step 4. Recursive call
 possible_max_benefit = new_se->benefit + possible_benefit(ddg);
 If (possible_max_benefit >= current_max_benefit) {
 Selection_Algorithm(ddg,new_se);
 }

�

 // Step 5. Undo changes of ddg made in this level
 Undo changes of ddg made in this level.
 }
}

Figure 3.9 An optimal edge selection algorithm.

52

Figure 3.10 A selection table. Each selection entry records a set of edges and its
corresponding benefit.

In Step 1, the algorithm filters out candidate edges based on two criteria. First,

from Property 3 of critical edge selection, the algorithm can try only the candidate edge

on the critical path to find an optimal solution. Second, if the height of the sink node of

the edge is less than 2 or greater than |ddg|-2, the edge is too shallow or too deep to gain

benefits from value speculation, so the edge can be skipped. (The length of the modified

data dependence graph cannot be reduced after performing the value speculation

transformation on shallow or deep edges, because the predicting and verifying nodes and

new edges are added.)

In Step 2, combining the previous edge selection, se->edges, and the candidate

edge forms a new edge selection, new_edges. The selection table is searched to check if

a selection entry with the same new_edges already exists. If so, the algorithm continues

to the next loop iteration. Otherwise, the table gets an empty selection entry, new_se, and

stores the new edge selection, new_edges, to that entry.

In Step 3, the current ddg is updated by performing the value speculation

transformation on the edge, including breaking the candidate edge and adding necessary

 Edges Benefit

{E2} 0.995

 Selection_Entry --->

53

nodes and edges. Then, from Property 1 of decomposition, the new benefit is calculated

as the sum of the old_benefit (= se->benefit) and the benefit_difference, and is saved to

the entry, new_se->benefit. If the new benefit is greater than the current_max_benefit,

the current_max_benefit is updated and the best_se points to the new_se. If the benefits

are the same, the new_se is attached to the linked list by searching from the best_se.

In Step 4, the possible maximal benefit, possible_max_benefit, is calculated as the

new benefit plus the possible benefit for the current ddg by removing all remaining

candidate edges temporarily. The recursion continues if the possible_max_benefit can

beat or equal the current_max_benefit.

In Step 5, all changes of the ddg made in this level are undone, such that the

Selection_Algorithm is ready to test the next candidate edge. After the

Selection_Algorithm stops, if the current_max_benefit is greater than 0, an optimal

solution is found by searching the linked list from the best_se to get a minimal set of

edges that yield the maximal benefit (=current_max_benefit).

3.4.2 Running Time Analysis

To analyze the complexity of the proposed optimal edge selection algorithm, a

call graph of the Selection_Algorithm for one data dependence graph in 129.compress is

shown in Figure 3.11. Each node in the call graph represents one instance of the

Selection_Algorithm. Inside each node, the first number is the called order of the

Selection_Algorithm, and the second number is the corresponding benefit that the

Selection_Algorithm finds after performing value speculation transformation on one

specific edge selection. Having 12 candidate edges in the data dependence graph for the

call graph shown in Figure 3.11, the Selection_Algorithm is called only 29 times. Note

54

that a brute-force method needs to try 212 = 4096 combinations to find an optimal solution

for 12 candidate edges. This shows that the Selection_Algorithm is quite efficient to find

an optimal solution that yields the maximal benefit. In the call graph shown in Figure

3.11, the function call in the first level corresponds to the DDG0, the function calls in the

second level correspond to the DDG1, and so on. Some function calls make recursions,

and some function calls stop in certain levels of the modified DDG. This is due to the

branch-and-bound condition in Step 4 of Figure 3.9. If the possible maximal benefit is

less than the current maximal benefit, the recursion stops.

Figure 3.11 A call graph of the Selection_Algorithm for one data dependence graph
in 129.compress. In each node, the first number is the called order, and the second

number is the corresponding benefit that the Selection_Algorithm finds.

55

The running time of the proposed optimal edge selection algorithm is proportional

to the number of selection entries that it tries multiplied by the running time of finding

critical paths, which is O(|N| + |E|), in the Selection_Algorithm. In the best case where

penalties of nodes are very large, the Selection_Algorithm does not continue the recursion

after trying one edge in the Selection_Algorithm. Also, shallow, deep, or non-critical

edges are skipped in Step1, so in the best case the Selection_Algorithm tries less than |E|

combinations and then stops. The best-case running time is O(|E|) * O(|N| + |E|). In the

worst case where penalties of nodes are very small, the algorithm always continues the

recursion and tries almost all combinations of edges. Thus, the worst-case running time

is exponential, with O(2|E|) * O(|N| + |E|). However, because not all operations are highly

predictable and the penalties of nodes vary, the average running time of the proposed

algorithm is observed to be polynomial and efficient in our experiments.

Figure 3.12 shows the empirical running time analysis of the optimal edge

selection algorithm applied to the data dependence graphs of the 20 most heavily

executed paths selected from each SPECint95 benchmark. In Figure 3.12, the x-axis is

the number of candidate edges, and the y-axis is the number of combinations that the

Selection_Algorithm tries. From Figure 3.12, most benchmarks have less than 40

candidate edges for the Selection_Algorithm to try, except that 132.ijpeg has up to 160

candidate edges. With so many candidate edges, the algorithm tries less than 10,000

combinations for all data dependence graphs except one graph in 124.m88ksim that

yields 14,599 combinations. From the data points in Figure 3.12, the average trend line is

y = 0.0016x3 - 0.67x2 + 67.349x - 306.35, so the empirical average running time is O(|E|3)

* O(|N| + |E|). Also, the empirical worst-case trend line is y = 0.1012x4 - 5.1062x3 +

56

80.286x2 - 416.35x + 467.08. In Chapter 4, the value prediction accuracy heuristics are

proposed to speed up the optimal edge selection algorithm by more than 80% and still

find good benefits from value speculation. To implement the optimal edge selection

algorithm in a production compiler, a bail-out mechanism can be employed in the

Selection_Algorithm based on an upper bound of combinations that the algorithm can try,

so the running time is controlled within a certain limit.

The Empirical Running Time Analysis

1

10

100

1000

10000

100000

0 20 40 60 80 100 120 140 160 180

of Candidate Edges

o

f
C

o
m

b
in

at
io

n
s

099.go 124.m88ksim 126.gcc 129.compress 130.li 132.ijpeg 134.perl 147.vortex

Figure 3.12 The empirical running time analysis of the optimal edge selection
algorithm. For all data points, the average-case complexity is y = 0.0016x3 - 0.67x2 +
67.349x - 306.35. The worst-case complexity is y = 0.1012x4 - 5.1062x3 + 80.286x2 -

416.35x + 467.08.

3.5 Experimental Results

In this section, the optimal edge selection algorithm was experimented for the

value speculation scheme on a statically-scheduled machine with compiler-generated

57

recovery code [22]. The target architecture is a VLIW machine model based on the

Hewlett-Packard Laboratories HPL-PD architecture [20]. All operations have a one-

cycle latency except for load (two cycles), floating-point add (two cycles), floating-point

subtract (two cycles), floating-point multiply (threes cycles), and floating-point divide

(three cycles). All SPECint95 programs were compiled with classic optimizations by the

IMPACT compiler from the University of Illinois [18] and converted to the Rebel textual

intermediate representation by the Elcor compiler from Hewlett-Packard Laboratories

[19]. Then, the LEGO compiler, developed at North Carolina State University, was used

to insert profiling code, form treegions, and schedule operations [17]. After

instrumentation for profiling, intermediate code from the LEGO compiler was converted

to C code. Executing the resultant C code generated profiling data.

Several experimental results are presented in this section. Section 3.5.1 presents

the results of value profiling and branch profiling, which are used to model penalties for

mispredicting nodes. Section 3.5.2 shows the maximal benefit from value speculation on

the 20 most heavily executed paths in the SPECint95 benchmarks. Section 3.5.3 analyzes

the selected edges, producer operations, and consumer operations.

3.5.1 Results of Value Profiling and Branch Profiling

As discussed in Section 3.2, to model the penalties for mispredicting nodes, the

value misprediction rates and the BNE branch misprediction rates are required and

provided by program profiling [4], [7] in the experiments.

58

Value Prediction Accuracies and BNE Branch Prediciton Accuracies of
Integer-Register-Writing Operations in SPECint95

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pre

ss

13
0.l

i

13
2.i

jp
eg

13
4.p

er
l

14
7.v

orte
x

Arit
hm

et
ic

 M
ea

n

SPECint95

A
cc

u
ra

cy
Value Prediction Accuracy BNE Branch Prediction Accuracy

Figure 3.13 Value prediction accuracies and BNE branch prediction accuracies of
integer-register-writing operations in the SPECint95 benchmarks.

BNE Branch Prediction Accuracies

0

10

20

30

40

50

60

70

80

90

100

0%
-1

0%

10
%

-2
0%

20
%

-3
0%

30
%

-4
0%

40
%

-5
0%

50
%

-6
0%

60
%

-7
0%

70
%

-8
0%

80
%

-9
0%

90
%

-1
00

%

Value Prediction Accuracy Slot

B
ra

n
ch

 P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

099.go 124.m88ksim 126.gcc 129.compress 130.li

132.ijpeg 134.perl 147.votex Average

Figure 3.14 BNE branch prediction accuracies sorted by their corresponding value
prediction accuracies.

59

A hybrid value predictor [13], [22], which contains stride [4], [10], [13] and

context-based value predictors [10], [11], was used to profile all integer-register-writing

operations. The value prediction table size equals the number of all integer-register-

writing operations in each SPECint95 program. For context-based value predictors, the

entry in the first level table records one actual result that indexes a local second level

table with 16 entries. Simple two-bit counters were used to predict the BNE branches for

verifying value prediction. Figure 3.13 shows the value prediction accuracies and the

BNE branch prediction accuracies for integer-register-writing operations in the

SPECint95 benchmarks. The average value prediction accuracy is 61.62%, lower than

the average BNE branch prediction accuracy of 88.81%. In general, the BNE branches

have high predictability, so that the processor can accurately predict to execute recovery

code. The correct BNE branch prediction avoids the penalties for flushing pipeline stages

in the case of branch misprediction.

The average BNE branch prediction accuracies are presented in Figure 3.14 by

sorting them based on the corresponding value prediction accuracies. For highly

predictable operations and highly unpredictable operations, the BNE branches have very

high predictability. For operations with medium value prediction accuracies around 50%,

their BNE branch prediction accuracies are the lowest. In 134.perl, the BNE branches

that correspond to the value prediction accuracy between 40% and 60% have the branch

prediction accuracy lower than 50%. Predicting operations with low BNE branch

predictability may lead to high penalties for value misprediction. In Figure 3.14, the data

points that correspond to value prediction accuracies lower than 10% or higher than 90%

are very close to each other. However, the data points that correspond to value prediction

60

accuracies between 30% and 60% are very distant. The reason is that operations tend to

be highly predictable or highly unpredictable, so there are many operations that

contribute to the average accuracy and the variance is small among SPECint95

benchmarks. Operations with medium value predictability are very few, so the variation

of the average branch prediction accuracy among different benchmarks is large.

3.5.2 Maximal Benefits from Value Speculation

For further experiments of the optimal edge selection algorithm, the 20 most

heavily executed paths were chosen from each SPECint95 benchmark. Penalties for

mispredicting nodes were modeled based on the profile results and three different branch

misprediction penalties of 2, 5, and 10 cycles. Running the optimal edge selection

algorithm generates the results of an optimal set of edges and the corresponding maximal

benefit. Analyzing the results helps us realize the potential of value speculation. Figure

3.15 shows the number of improved paths under different branch misprediction penalties.

A path is counted as an improved path if the optimal edge selection algorithm can find a

positive maximal benefit. Using branch misprediction penalties of 2, 5, and 10 cycles,

the average numbers of improved paths are 5.875, 5.375, and 5.25 out of 20 paths. The

larger branch misprediction penalties, the fewer paths can be improved by value

speculation. In the SPECint95 benchmarks, 124.m88ksim has the most improved paths

of 11. However, 132.ijpeg and 099.go have one or no paths improved by value

speculation. The other benchmarks have around six improved paths.

Figure 3.16 shows the speedup of value speculation, which is measured as the

maximal benefit divided by the minimal cycles of executing the original data dependence

graph. As the branch misprediction penalty increases, the speedup decreases. When

61

using a 10-cycle branch misprediction penalty, 124.m88ksim gets the highest speedup of

25.57%. 147.vortex has the second highest speedup of 16%. 126.gcc, 129.compress,

130.li, and 134.perl have significant speedups around 9% that are available for the value

speculation techniques to exploit. The average speedup is 9.61% for all SPECint95

benchmarks. 099.go and 132.ijpeg with no or small speedups are not good candidates for

value speculation. The results of Figures 10 and 11 suggest that if the penalties for

branch misprediction are high, the optimization opportunities for the value speculation

techniques will decrease, and the value speculation technique needs to carefully select

and break dependences.

The Number of Improved Paths

0

2

4

6

8

10

12

14

16

18

20

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

ompre
ss

13
0.l

i

13
2.i

jpeg

13
4.p

erl

14
7.v

orte
x

Arit
hmeti

c M
ea

n

SPECint95

o

f
Im

p
ro

ve
d

 P
at

h
s

Penalty_2 Penalty_5 Penalty_10

Figure 3.15 The number of improved paths using branch misprediction penalties of
2, 5, and 10 cycles. (Note that 099.go has no improved paths in all cases.)

62

The Speedup of Value Speculation on the 20 Most Heavily Executed
Paths

0%

5%

10%

15%

20%

25%

30%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

ompre
ss

13
0.l

i

13
2.i

jpeg

13
4.p

erl

14
7.v

orte
x

Arit
hmeti

c M
ea

n

SPECint95

S
p

ee
d

u
p

Penalty_2 Penalty_5 Penalty_10

Figure 3.16 The speedup of value speculation on the 20 most heavily executed paths
using branch misprediction penalties of 2, 5, and 10 cycles. (Note that 099.go has no

speedups in all cases.)

3.5.3 Results of Selected Edges and Nodes

Knowing the maximal benefit from value speculation in Section 3.5.2, the optimal

set of edges selected by the algorithm is examined in terms of the value prediction

accuracy distribution and the location distribution. The location distributions and the

opcodes of the selected producer and consumer operations are also presented.

The value prediction accuracy distribution of the selected edges using a 10-cycle

branch misprediction penalty is shown in Figure 3.17. Surprisingly, 66% of the selected

edges have value prediction accuracies over 99%. There are very few selected edges

whose prediction accuracies are lower than 94%. The high penalties for value

misprediction make the optimal edge selection algorithm select very highly predictable

63

edges to break. This implies that the high value prediction accuracy threshold or the

confidence mechanism [8] is necessary to reduce the impact of value misprediction.

The location distribution of the selected edges is shown in Figure 3.18. The

locations in the data dependence graph are normalized to the original length of the data

dependence graph. Zero indicates the top location and one indicates the bottom location

in the data dependence graph. Each bar in Figure 3.18 shows the percentage of edges that

cross the specific location in the data dependence graph. In Figure 3.18, 21.27% of edges

cross the 0.4 normalized location, producing the most frequent crossing area. The

selected edges tend to span the middle location of the data dependence graph, but more

rarely cross the locations toward the top or the bottom. Intuitively, breaking edges that

cross the middle location obtains large cycle savings by splitting the data dependence

graph into half.

The Value Prediction Accuracy Distribution of Selected Edges

0%

10%

20%

30%

40%

50%

60%

70%

10
0%

-99
%

99
%-98%

98
%-97%

97
%-96%

96
%-95%

95
%-94%

94
%-93%

93
%-92%

92
%-91%

91
%-90%

90
%-80%

80
%-0%

Value Prediction Accuracies

P
er

ce
n

ta
g

e

Figure 3.17 The value prediction accuracy distribution of the selected edges (using a
10-cycle branch misprediction penalty).

64

The Location Distribution of Selected Edges

0%

5%

10%

15%

20%

25%

TOP=0
.0 0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

BOTTOM
=1

.0

The Normalized Locations in Data Dependence Graphs

P
er

ce
n

ta
g

e

Figure 3.18 The location distribution of the selected edges (using a 10-cycle branch
misprediction penalty).

After examining the locations of the selected edges, the location distributions of

the selected producer and consumer operations are shown in Figures 3.19 and 3.20. Each

bar in Figures 3.19 and 3.20 represents the percentage of operations that originally stay

between two adjacent normalized locations in the data dependence graph. In Figure 3.19,

the selected producer operations are likely to reside in the upper portion of the data

dependence graph. 26.5% of the producer operations are between the 0.2 and 0.3

normalized locations, producing the most frequent crossing area. Conversely, the

selected consumer operations appear toward the lower part of the data dependence graph.

21.68% of the consumer operations are between the 0.6 and 0.7 normalized locations,

producing the most frequent crossing area. The different locations of the producer and

consumer operations may explain why most of the selected edges cross the middle

65

locations of the data dependence graph. From the results that the selected producer and

consumer operations appear in many different locations, the heuristics of selecting

operations based on only one specified location [24] may not obtain maximal benefits

from value speculation.

The top five opcodes of the selected producer and consumer operations are shown

in Table 3.2. The top two opcodes of the producer operations are LOAD (WORD) with

49.39% and LOAD (BYTE) with 13.25%. Because load operations have two-cycle

latencies and other integer operations have one-cycle latencies, load operations are

usually on the critical paths. Predicting load operations can often reduce the length of the

critical path, so load operations are selected most frequently. For the consumer

operations, ADD, AND, and OR are the top three opcodes with 27.71%, 15.66%, and

14.45%. The percentage differences are small for different consumer operations, when

compared to the percentage difference of the top two producer operations. The results

suggest that long-latency operations be good candidates for value prediction. However,

choosing different operations to consume the predicted values does not matter

significantly.

Table 3.2 The top five opcodes and percentages of the selected producer and
consumer operations (using a 10-cycle branch misprediction penalty).

Rank Opcode and Percentage of

Producer Operations

Opcode and Percentage of

Consumer Operations

1 LOAD (WORD) => 49.39% ADD => 27.71%

2 LOAD (BYTE) => 13.25% AND => 15.66%

3 AND => 9.63% OR => 14.45%

4 ADD => 7.22% LOAD (WORD) => 10.84%

5 MOVE => 6.02% SUB => 8.43%

66

The Location Distribution of Selected Producer Operations

0%

5%

10%

15%

20%

25%

30%

0.
0-

0.1

0.
1-

0.2

0.
2-

0.3

0.
3-

0.4

0.
4-

0.5

0.
5-

0.6

0.
6-

0.7

0.
7-

0.8

0.
8-

0.9

0.
9-

1.0

The Normalized Locations in Data Dependence Graphs

P
er

ce
n

ta
g

es

Figure 3.19 The location distribution of the selected producer operations in data
dependence graphs (using a 10-cycle branch misprediction penalty).

The Location Distribution of Selected Consumer Operations

0%

5%

10%

15%

20%

25%

0.
0-

0.1

0.
1-

0.2

0.
2-

0.3

0.
3-

0.4

0.
4-

0.5

0.
5-

0.6

0.
6-

0.7

0.
7-

0.8

0.
8-

0.9

0.
9-

1.0

The Normalized Locations in Data Dependence Graphs

P
er

ce
n

ta
g

es

Figure 3.20 The location distribution of the selected consumer operations in data
dependence graphs (using a 10-cycle branch misprediction penalty).

67

3.6 Summary

In this chapter, an optimal edge selection problem is proposed to model the value

speculation techniques. This model helps us understand and improve the techniques for

value speculation. Based on three properties observed from the optimal edge selection

problem, an algorithm is designed to solve the optimal edge selection problem efficiently.

The output of the optimal edge selection algorithm indicates an optimal set of edges that

can be broken to obtain maximal benefits from value speculation. From the experimental

results, the average speedup of value speculation is 9.61% on the 20 most heavily

executed paths selected from each SPECint95 benchmark. Most of the selected edges

have value prediction accuracies over 99%, so the impact of value misprediction is

minimized. The location distributions of the selected edges and the opcodes of the

selected producer operations provide insights to adjust the heuristic values used in the

value speculation techniques.

In Chapter 4, the optimal edge selection algorithm is proposed to serve as a new

compilation phase of benefit analysis to expose an optimal set of edges (dependences) to

the dynamically-scheduled machines by using special bits in an instruction format for

breaking flow dependences dynamically, or to the compiler for performing the VSS

optimization statically. Thereby, the techniques for value speculation can provide the

largest speedups for microprocessors.

68

Chapter 4

Compiler-Directed Edge Selection

It is a challenging task for a value speculation technique to select dependences to

break to improve the performance of microprocessors. The reasons are many. Predicting

operations with low predictability results in adverse effects on execution time due to

frequent execution of recovery code (or frequent re-execution of operations that are

affected by mispredicted values.) However, predicting operations with high

predictability may not shorten execution time, because other data dependences may still

exist in a program. Also, after predicting operations on a critical path, the newly created

critical path may still limit program execution, resulting in critical path lengths that are

not significantly shorter. Moreover, due to the nature of speculative execution, non-

speculative and speculative operations compete for machine resources. As discussed in

Section 3.1, the I-Cache, D-Cache, and branch predictor are all affected by speculative

execution. If there are small benefits in terms of ideal execution cycles after applying

69

value speculation, the penalties of I-Cache, D-Cache, and branch misprediction stalls will

counteract the benefits, and the net speedup of value speculation will be negative.

In this Chapter, we propose using compiler-directed edge selection to let the value

speculation techniques know which dependences should be broken dynamically or

statically. The compiler-directed edge selection serves as a new compilation phase of

benefit analysis, which is an application derived from the optimal edge selection

algorithm introduced in Chapter 3. Running the optimal edge selection algorithm finds a

minimal set of edges (dependences) that the value speculation techniques can break to

yield maximal benefits. The selected dependences are exposed to the dynamic hardware

by using special fields in the instruction format or to the value speculation scheduler

statically. To efficiently use the compiler-directed edge selection, employing value

prediction accuracy thresholds can speed up the original optimal edge selection

algorithm.

The remainder of this chapter is organized as follows. Section 4.1 describes the

schemes of exposing compiler-directed edge selection to dynamically-scheduled and

statically-scheduled machines. Section 4.2 introduces the heuristics to speed up the

optimal edge selection algorithm. Section 4.3 presents experimental results of exposing

compiler-directed edge selection to the VSS scheme [22], including the edge selection,

the code size expansion, the register pressure, and the execution time speedup. Section

4.4 concludes this chapter.

70

4.1 Schemes of Exposing Compiler-Directed Edge Selection

To expose compiler-directed edge selection to dynamically-scheduled machines,

special fields in an instruction are used to indicate the selected dependences that need to

be broken. In [4], special directives in the opcodes are proposed to select specific value

prediction methods, such as last value or stride. Figure 4.1 shows an instruction format

that supports choosing a prediction method [4] and provides specific dependences for the

value speculation techniques to break in dynamically-scheduled machines. Four new

fields of PM, D, S1, and S2 are added in an instruction. The PM field indicates which

value predictor is used to generate a prediction. The bit width of the PM field depends on

how many value predictors are available in the hardware. The D field is a 1-bit field to

decide if the prediction needs to be made for this instruction. The S1 and S2 fields are 1-

bit fields that determine to consume the predicted values for value-speculative execution,

if the actual results of source registers are not ready. The new instruction format

alleviates the burden for the hardware to dynamically decide which operation to predict

and which operation to consume a predicted value. Previously, the instruction selection

is based either on the confident level of predictions or on the critical path information of

instructions [8], [9].

For statically-scheduled machines, the selected edges (dependences) are directly

fed to the compiler to perform the VSS optimization [24]. The value speculation

scheduler breaks the selected dependences by inserting predicting operations (LDPRED),

generates recovery code, and schedules operations aggressively.

71

Figure 4.1 An instruction format that can choose a prediction method and specify
dependences for value speculation.

4.2 Heuristics Applied to the Optimal Edge Selection
Algorithm

To efficiently use the compiler-directed edge selection, the running time of the

optimal edge selection algorithm shown in Figure 3.9 must be reduced. Heuristics of

value prediction accuracy thresholds are proposed to speed up solving the optimal edge

selection problem. In Step 1 of the algorithm shown in Figure 3.9, the value prediction

accuracy thresholds can be used to filter out more candidate edges. Five different value

prediction accuracy thresholds of 80%, 85%, 90%, 95%, and 99% were experimented for

the 20 most heavily executed paths in each SPECint95 benchmark.

Figure 4.2 shows the normalized number of edge selections that are tried by the

original algorithm and the algorithms with five different thresholds. When increasing the

value prediction accuracy threshold, the number of selections decreases by a certain

amount. In 124.m88ksim, the thresholds of 80%, 85%, 90%, and 95% cannot filter out

edges effectively; only the threshold of 99% reduces a lot of combinations, because most

operations in 124.m88ksim are very highly predictable. In 099.go and 132.ijpeg,

applying all value prediction accuracy thresholds yields very few or no selections,

PM D S1 S2 Opcode Dest Reg Src1 Reg Src2 Reg

PM: Selecting a prediction method to generate a prediction
D: Indicating to generate a prediction for the destination register
S1: Indicating to consume a predicted value for the source register 1
S2: Indicating to consume a predicted value for the source register 2

72

because operations in these benchmarks have very low predictability. In 126.gcc,

129.compress, 130.li, 134.perl, and 147.vortex, the value prediction accuracy thresholds

of 90%, 95%, and 99% effectively reduce more than 80% of combinations compared to

the original number of selections. For all benchmarks, the algorithm with the value

prediction accuracy threshold of 99% yields the fewest combinations.

Figure 4.3 shows the normalized maximal benefit from value speculation that is

found by the original algorithm and the algorithms with five different value prediction

accuracy thresholds for the 20 most heavily executed paths in each SPECint95

benchmark. The algorithm with the value prediction accuracy threshold of 80% yields

the same maximal benefit as the one found by the original algorithm for all SPECint95

benchmarks. Using the thresholds of 85% and 90%, the algorithm gets the same maximal

benefit for all benchmarks except for 147.vortex. In 126.gcc, 129.compress, and

147.vortex, using the threshold of 95% reduces the maximal benefit by 3.5%, 29%, and

13% respectively. In Figure 4.2, the threshold of 99% can reduce the most running time

of the original algorithm, but the corresponding maximal benefit drops significantly for

most of the benchmarks as shown in Figure 4.3. From the results of Figures 4.2 and 4.3,

the value prediction accuracy threshold of 90% is a good heuristic value that can be

applied to the original optimal edge selection algorithm to speed up the analysis by more

than 80% for most of the SPECint95 benchmarks, and still get benefits close to the

original maximal benefits.

73

The Normalized Number of Edge Selections for the 20 Most Heavily
Executed Paths

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

ompre
ss

13
0.l

i

13
2.i

jpeg

13
4.p

erl

14
7.v

orte
x

SPECint95

T
h

e
N

o
rm

al
iz

ed
 N

u
m

b
er

Original Acc80% Acc85% Acc90% Acc95% Acc99%

Figure 4.2 The normalized number of edge selections that are tried by the original
algorithm and the algorithms with five value prediction accuracy thresholds for the

20 most heavily executed paths in SPECint95.

The Normalized Maximal Benefit for the 20 Most Heavily Executed Paths

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

ompre
ss

13
0.l

i

13
2.i

jpeg

13
4.p

erl

14
7.v

orte
x

SPECint95

T
h

e
N

o
rm

al
iz

ed
 B

en
ef

it

Original Acc80% Acc85% Acc90% Acc95% Acc99%

Figure 4.3 The normalized maximal benefit using the original algorithm and the
algorithms with five value prediction accuracy thresholds for the 20 most heavily

executed paths in SPEint95. (Note that 099.go has no benefits in all cases.)

74

4.3 Experimental Results

Several experimental results of exposing compiler-directed edge selection to the

VSS optimization are presented in detail, including the edge selection in Section 4.3.1,

the code size expansion in Section 4.3.2, the register pressure in Section 4.3.3, and the

execution time speedup in Section 4.3.4.

4.3.1 Edge Selection

In the experiments, the optimal edge selection algorithm with the value prediction

accuracy threshold of 90% was performed on the 20 most heavily executed paths selected

from each SPECint95 benchmark. Table 4.1 shows the results of the maximal benefit,

the number of selected edges, the number of selected producer operations, and the

number of selected consumer operations. The maximal benefit is the average percentage

of critical path reduction for the 20 most heavily executed paths in each benchmark. In

Table 4.1, 124.m88ksim and 147.vortex have the highest benefits of 25.57% and 14.69%.

In 126.gcc, 129.compress, 130.li, and 134.perl, the maximal benefits are significant with

8%. 099.go and 132.ijpeg are not good candidates for value speculation, because their

benefits are negligible.

In Table 4.1, the number of the selected edges indicates how many dependences

are to be broken via the value speculation techniques. The number of the selected

producer operations is the number of predictions that the value predictor generates, and

the number of the selected consumer operations is the number of operations that consume

predicted values for the source operands. For all programs except for 124.m88ksim and

129.compress, the numbers of edges, producer operations, and consumer operations are

75

the same. This means that each predicted operation feeds to only one consumer

operation, and each consumer operation receives only one predicted value for value-

speculative execution. In 124.m88ksim and 129.compress, some predicted values are

used by more than one consumer operations, and some consumer operations use more

than one predicted values for the source operands.

Table 4.1 Results of the optimal edge selection algorithm with the value prediction
accuracy threshold of 90% on the 20 most heavily executed paths in SPECint95.

SPECint95 The Maximal

Benefit

of Selected

Edges

of Producer

Operations

of Consumer

Operations

099.go 0% 0 0 0

124.m88ksim 25.57% 33 30 28

126.gcc 8.81% 8 8 8

129.compress 9.49% 15 11 14

130.li 8.15% 6 6 6

132.ijpeg 0.81% 1 1 1

134.perl 8.04% 9 9 9

147.vortex 14.69% 11 11 11

Average 9% 10.375 9.5 9.625

For further experiments on the VSS optimization, the SPECint95 benchmarks

except for 099.go and 132.ijpeg were chosen. The selected edges (dependences) were

exposed to the compiler to perform VSS for a 16-issue VLIW machine model based on

the Hewlett-Packard Laboratories HPL-PD architecture [20]. All operations have a one-

cycle latency except for load (two cycles), floating-point add (two cycles), floating-point

subtract (two cycles), floating-point multiply (threes cycles), and floating-point divide

(three cycles). The SPECint95 programs were compiled with classic optimizations by the

IMPACT compiler from the University of Illinois [18] and converted to the Rebel textual

76

intermediate representation by the Elcor compiler from Hewlett-Packard Laboratories

[19]. Then, the LEGO compiler [17] scheduled base code (without the VSS

optimization) and VSS-optimized code.

Table 4.2 The code size of base code and VSS-optimized code in SPECint95. (The
unit is the number of single operations.)

SPECint95 Base Code VSS-Optimized

Code

Difference

(VSS – Base)

Ratio

(VSS / Base)

124.m88ksim 46,496 47,165 669 1.014

126.gcc 500,602 500,957 355 1.000

129.compress 1,773 2,213 440 1.248

130.li 14,982 15,191 209 1.014

134.perl 92,253 92,876 623 1.006

147.vortex 212,471 212,785 314 1.001

Average 144,762 145,197 435 1.048

4.3.2 Code Size Expansion

Table 4.2 shows the code size of base code and VSS-optimized code. The unit is

the number of single operations in a program. The difference and the ratio between VSS-

optimized code and base code are presented in columns 4 and 5 of Table 4.2. After

applying VSS, the code size increases, because recovery code and new operations, such

as LDPRED, UDPRED, and BNE [24], are generated in VSS-optimized code. The

difference of VSS-optimized code and base code is averaging 435 operations, and the

code size ratio is 1.048 on an average. 124.m88ksim has the largest code size difference

of 669 operations, because there are the most selected edges to be broken as shown in

Table 4.1. 134.perl is second with 623 additional operations in VSS-optimized code.

130.li has the fewest additional operations, because only six edges are selected in Table

77

4.1. If the code size expansion is huge, the performance of the I-Cache will be degraded

and the benefits from value speculation will be affected.

4.3.3 Register Pressure

Table 4.3 presents the register usage in the procedures that are different between

base code and VSS-optimized code. In general, because the VSS scheme creates

recovery code and uses new registers to store the predicted values, the register usage of

VSS-optimized code is higher than that of base code.

Table 4.3 The register usage in the procedures that are different between base code
and VSS-optimized code.

 Base Code VSS-Optimized Code

Register Usage Average Maximum Spilled Average Maximum Spilled

124.m88ksim 12.26 37 0 13.19 37 0

126.gcc 21.75 52 0 22.5 45 0

129.compress 9.33 21 0 10 25 0

130.li 6.22 18 0 6.31 18 0

134.perl 15.82 128 1 15.94 128 1

147.vortex 14.49 65 0 14.61 65 0

Overall 13.31 128 1 13.76 128 1

For all programs, VSS-optimized code uses averaging 13.76 registers that are

higher than 13.31 registers for base code. In our VLIW machine model, there are 128

integer registers. If the register allocator cannot assign 128 architectural registers to all

virtual registers used in a procedure, the spilling and filling code will be introduced. In

134.perl, base code and VSS-optimized code contain one spilled register. For the other

benchmarks, up to 65 registers are enough to assign all virtual registers in base code and

VSS-optimized code. From the results of Table 4.3, VSS-optimized code does not

78

increase the register pressure very much. However, in one procedure of 126.gcc, VSS-

optimized code actually requires fewer registers than base code does. Because the ILP

transformation via VSS breaks the critical path and may shorten the register lifetime,

fewer architectural registers are required to assign all virtual registers in the procedure of

VSS-optimized code in 126.gcc.

4.3.4 Execution Time Speedup

Trace simulation was performed for evaluating the speedup of VSS-optimized

code over base code on nine machine models, which are composed of functional blocks

shown in Table 4.4. In Table 4.4, there are four functional blocks: execution, I-Cache, D-

Cache, and branch predictor blocks. The execution block is capable of issuing and

executing 16 operations per cycle with 16 universal functional units. The I-Cache block

is a 64k-byte compressed I-Cache with two banks [33]. The D-Cache block is a 4-way

cache with 64k-byte data storage. The branch predictor block employs multi-way branch

prediction [34], [35] with 214 entries in the branch prediction table (BPT) and 214 entries

in the branch target buffer (BTB). The branch misprediction stalls are 2, 5, or 10 cycles.

Figure 4.4 shows the execution time speedup of VSS-optimized code over base

code using nine machine models. The first model is composed of the execution block,

and represents an ideal model that calculates pure execution cycles in the pipeline. The

next five models consist of the execution and I-Cache, execution and D-Cache, execution

and branch (2-cycle stalls), execution and branch (5-cycle stalls), and execution and

branch (10-cycle stalls). The last three models represent realistic models that contain the

execution, I-Cache, D-Cache, and branch predictor with 2-, 5-, or 10-cycle stalls.

79

Table 4.4 Functional blocks used for composing different machine models.

Blocks Specification

Execution Dispatch/issue/retire bandwidth: 16

Universal functional units: 16

Operation latencies are described in Section 4.3.1.

I-Cache Compressed (zero-nop) and two banks with 64k bytes [33]

Line size = 16 operations (each bank)

Miss penalty = 12 cycles

D-Cache Size/assoc./repl. = 64kB/4-way/LRU

Line size = 32 bytes

Miss penalty = 14 cycles

Branch Predictor Multi-way branch prediction [34], [35]

Branch prediction table (BPT) = 214 entries

Branch target buffer (BTB) entry/assoc./repl. = 214/8-way/LRU

Branch misprediction stalls = 2, 5, 10 cycles

The Execution Time Speedup of VSS-Optimized Code over Based Code

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

12
4.m

88
ks

im

12
6.g

cc

12
9.c

ompre
ss

13
0.l

i

13
4.p

erl

14
7.v

orte
x

Harm
onic

Mea
n

SPECint95

S
p

ee
d

u
p

1. Excution 2. Execution+I-Cache

3. Execution+D-Cache 4. Execution+Branch-2

5. Execution+Branch-5 6. Excution+Branch-10

7. Execution+I-Cache+D-Cach+Branch-2 8. Execution+I-Cache+D-Cache+Branch-5

9. Execution+I-Cache+D-Cache+Branch-10

Figure 4.4 The execution time speedup of VSS-optimized code over based code using
nine machine models.

80

In Figure 4.4, the speedups of VSS-optimized code over base code are positive

under all machine models. 147.vortex gets the highest speedups ranging from 13.5% to

16%. 124.m88ksim is second with speedups between 9% and 12.5%. 129.compress has

the third highest speedups ranging from 3.8% to 8%. 134.perl and 130.li have moderate

speedups, less than 4 % or 3%. 126.gcc has the lowest speedup of 1% or smaller. As

shown in Table 4.1, although the maximal benefits found by the optimal edge selection

algorithm for the 20 most heavily executed paths are more than 8% in the selected

SPECint95 benchmarks, the execution time speedups of VSS-optimized code over base

code are different in Figure 4.4. 126.gcc has small speedups, because its 20 most heavily

executed paths account for less than 10% of dynamic execution. In other SPECint95

benchmarks, the 20 paths account for more than 50% of execution time, but their

speedups of value speculation are still not the same. In 124.m88ksim, 129.compress, and

147.vortex, the scheduler does a good job of scheduling VSS-optimized code. However,

after applying VSS to 130.li and 134.perl, the scheduler does not fully exploit the

exposed ILP, so their speedups are small.

When comparing the speedups by using different machine models, Model 1 gets

the highest speedups in all programs except for 147.vortex. In 147.vortex, using Models

2, 7, 8, and 9 with the I-Cache has higher speedups than using Model 1. The reason is

that the VSS-optimized code changes the formation of basic blocks and exhibits better

performance of the I-Cache in 147.vortex. When using Model 3 with the D-Cache, the

speedups decrease in all programs except for 130.li. In general, the VSS optimization

generates more load and store operations to access the D-Cache, and the increased D-

Cache stalls reduce the speedups of value speculation. When branch predictors are

81

incorporated into Models 4, 5, and 6, the corresponding speedups decrease with increased

branch misprediction stalls. For most cases, VSS-optimized code experiences more

branch misprediction stalls than base code does. Using the most realistic machine model

(Model 9) still obtains significant speedups of up to 15%, and 5% on a harmonic mean.

Table 4.5 shows the execution time breakdown of base code and VSS-optimized

code when using Model 9. In Table 4.5, the pipeline stalls account for the largest portion

of execution time. VSS-optimized code always has fewer pipeline stalls than base code

does. In many cases, VSS-optimized code increases the I-Cache, D-Cache, and branch

misprediction stalls. However, in some benchmarks, VSS-optimized code has fewer I-

Cache, D-Cache, or branch misprediction stalls that are highlighted by bold fonts in

Table 4.5. Especially for investigating the performance of the multi-way branch

predictor, the branch misprediction rates of base code and VSS-optimized code are

shown in Figure 4.5. The average branch misprediction rate is 5.5% for base code and

5.6% for VSS-optimized code. In three benchmarks of 124.m88ksim, 126.gcc, and

147.vortex, VSS-optimized code has lower branch misprediction rates, while in the other

three benchmarks of 129.compress, 130.li, and 134.perl, VSS-optimized code has higher

branch misprediction rates. The lower branch misprediction rates in VSS-optimized code

do not always indicate that there are fewer branch misprediction stalls, e.g., 124.m88ksim

in Table 4.5. The reason is that VSS-optimized code contains more branches than base

code does, so the total branch misprediction stalls of VSS-optimized code are still higher

than those of base code. The statistics of multi-way branches in base code and VSS-

optimized code are shown in Table 4.6. Note that each multi-op can have up to 16

branches in the 16-issue VLIW machine model.

82

Table 4.5 The execution time breakdown of base code and VSS-optimized code by
using Model 9. (Bold fonts indicate that VSS-optimized code performs better than

base code does.)

SPECint95 Pipeline Stalls I-Cache Stalls D-Cache Stalls Branch Stalls

Base 68,072,621 8,974,476 85,706 5,002,520 124.m88ksim

VSS 60,500,902 9,181,224 123,689 5,533,940

Base 591,322,161 232,412,436 51,586,022 257,558,640 126.gcc

VSS 585,128,808 236,914,320 51,951,316 255,004,760

Base 18,756,881 1,056 1,989,003 3,432,190 129.compress

VSS 17,381,298 1,368 1,989,118 3,950,480

Base 109,920,236 4,776 23,544,167 23,913,270 130.li

VSS 107,172,257 4,848 22,622,106 26,562,110

Base 793,170,935 105,091,332 142,749,914 126,116,250 134.perl

VSS 761,828,702 110,032,188 142,676,454 128,172,090

Base 1,007,199,307 413,578,260 64,072,286 64,574,530 147.vortex

VSS 884,164,188 338,881,688 63,008,854 57,465,640

Branch Misprediction Rate of Base Code and VSS-Optimized Code by
Using Model 9

0%
1%
2%
3%
4%
5%

6%
7%
8%
9%

10%
11%
12%

12
4.m

88
ks

im

12
6.g

cc

12
9.c

ompre
ss

13
0.l

i

13
4.p

erl

14
7.v

orte
x

Arit
hmeti

c M
ea

n

SPECint95

B
ra

n
ch

 M
is

p
re

d
ic

ti
o

n
 R

at
e

Base Code VSS-Optimized Code

Figure 4.5 Branch misprediction rates of base code and VSS-optimized code by
using Model 9.

83

Table 4.6 Statistics of multi-way branches in base code and VSS-optimized code.
Each data represents the number of multi-ops that contains a certain number of

single branches from 1 to 16.
 124.m88ksim 126.gcc 129.compress 130.li 134.perl 147.vortex

Base VSS Base VSS Base VSS Base VSS Base VSS Base VSS

1 6144 6210 71518 71540 233 264 2919 2951 13089 13140 27714 27779

2 1535 1549 24390 24392 78 87 590 599 4026 4047 8422 8427

3 363 364 4240 4248 7 9 94 94 790 800 1598 1598

4 160 164 1866 1867 3 3 37 38 285 291 567 569

5 82 83 957 961 3 5 16 16 158 160 182 182

6 29 29 626 626 0 1 10 10 77 79 61 61

7 52 53 643 643 1 1 7 7 60 62 45 45

8 64 64 690 691 0 0 14 14 86 90 62 63

9 0 0 22 22 0 0 0 0 3 3 2 2

10 1 1 14 14 0 0 0 0 1 2 0 0

11 0 0 12 12 0 0 0 0 0 0 1 1

12 0 0 2 2 0 0 0 0 2 3 2 2

13 0 0 4 4 0 0 0 0 2 3 0 0

14 0 0 4 4 0 0 0 0 1 1 0 0

15 1 1 4 4 0 0 0 0 1 1 0 0

16 1 1 20 20 0 0 0 0 18 17 0 0

Sum 8432 8519 105012 105050 325 370 3687 3729 18599 18699 38656 38729

4.4 Summary

In this chapter, the schemes of exposing compiler-directed edge selection are

proposed for the value speculation techniques in dynamically-scheduled and statically-

scheduled machines. For dynamically-scheduled machines, the new instruction format

that contains four new fields is designed to select a prediction method and expose the

specific dependences to the hardware. The instruction format alleviates the burden for

the hardware to dynamically decide which dependences to break via value speculation.

For statically-scheduled machines, the selected dependences are directly fed to the value

speculation scheduler. The experimental results of exposing compiler-directed edge

84

selection to the VSS optimization are presented in detail, including the edge selection, the

code size expansion, the register pressure, and the execution time speedup. Speedups of

up to 15% and averaging 5% have been shown on a realistic machine model for

optimizing the 20 most heavily executed paths in the SPECint95 benchmarks.

85

Chapter 5

Software-Only Value Speculation
Scheduling

Value prediction [2], [3], [6] is an interesting research topic that has been

investigated since 1996. Researchers and computer architects try to exploit the

predictability for the values generated by register-writing operations to improve the

performance of microprocessors. Techniques for value prediction and value speculation

have been proposed as hardware-managed mechanisms [2], [3], [5], [8], [9], combined

hardware and compiler synergies [4], [22], [24], [25], [26], or pure software schemes

[23], [26]. The pure software techniques have the advantage of being applicable to

existing microprocessors without adding new value prediction hardware and modifying

processor pipelines to support value-speculative execution. In this chapter, we propose

software-only value speculation scheduling (SVSS) to shorten program execution time,

and investigate the performance of software static stride value predictors. The software

static stride value predictor is chosen because it is very simple and requires at most one

86

operation to generate predicted values. Instead of using filling and spilling code [23] to

preserve register values for implementing software static stride value predictors, we

propose using global registers [32] to reduce the overhead. Surprisingly, from the

experimental results, the software static stride value predictor obtains the prediction

accuracy of 95.47% comparable to 95.81% by using the hardware stride two-delta value

predictor [10], [13] for predictable operations (whose prediction accuracies are higher

than 50%) in the SPECint95 benchmarks. From the results of stride profiling, most of the

predictable operations have very few distinct stride values. 0, 1, 4, -1, and -4 are the most

frequently occurring stride values.

Having a certain amount of predictability of operations, the benefit analysis is

performed to know which dependences should be broken to obtain maximal benefits from

value speculation. Analyzing benefits for the 20 most heavily executed paths in each

SPECint95 benchmark shows that the average critical path reduction is 9.43%. From the

simulation for a VLIW machine model with the I-Cache, D-Cache, and multi-way branch

predictor that has five-cycle stalls, the execution time speedup of SVSS-optimized code

over base code has shown to be encouraging with up to 15%, and averaging 4%. These

results are based on a configuration of up to 30 global registers available for

implementing software static stride value predictors. Modern microprocessors, MIPS

R10000 [29], Alpha 21264 [30], and Intel Itanium [27], [28], [31], [41] have 64, 80, and

128 physical integer (or general) registers, but few registers are both logical (or

architectural) and global for the compiler usage. Intel Itanium has 32 global registers

where 18 registers (r14-r31) are scratch registers and may be utilized experimentally for

the SVSS optimization.

87

The remainder of this chapter is organized as follows. Section 5.1 introduces

software-only value speculation scheduling. Section 5.2 presents the design and analysis

of software static stride value predictors. Section 5.3 presents the experimental results.

Section 5.4 concludes this chapter.

5.1 Software-Only Value Speculation Scheduling

The compiler optimization using software static stride value predictors is an ILP

transformation that inserts software static stride value predictions to break flow (true)

dependences in a program. This optimization is called software-only value speculation

scheduling (SVSS). Compared to the traditional scheduler that must honor all true

dependences among operations to form a correct schedule, the value speculation

scheduler can break true dependences and speculatively schedule value-dependent

operations aggressively. The scheduler inserts a predicting operation to generate a

predicted value and a verifying operation to compare the predicted value with the actual

result. In the case of value misprediction, compiler-generated recovery code is used to

re-execute operations that are affected by incorrect predictions.

Figure 5.1 shows examples of ILP transformation via value speculation

scheduling (VSS) introduced in Chapter 2 and software-only value speculation

scheduling (SVSS). Figure 5.1(a) lists a sequence of operations that are taken from

129.compress in the SPECint95 benchmarks. Figure 5.1(b) presents new code after

applying VSS, and Figure 5.1(c) lists new code after applying SVSS. The difference

between VSS and SVSS is that the former has an explicit ISA to manage value prediction

hardware, but the latter uses simple ALU operations (ADD and MOVE) to emulate value

88

prediction. The advantage of SVSS over VSS is that the value prediction hardware is not

required and SVSS can be applied to existing microprocessors.

 (a) Original code

17: ADD R8 Ä Label, 0
 7: AND R2 Ä R26, 255
 8: LW R4 Ä 0(R8)
10: ADD R3 Ä R4, 1
11: SW 0(R8) Ä R3
12: SW 0(R4) Ä R2
Next:

(b) New code after applying VSS

17: ADD R8 Ä Label, 0
 7: AND R2 Ä R26, 255
 8: LW R4 Ä 0(R8)
// load prediction from hardware
21: LDPRED R9 Ä index
10: ADD R3 Ä R9, 1
11: SW 0(R8) Ä R3
12: SW 0(R4) Ä R2
// verify prediction
22: BNE Recovery R9, R4
Next:

Recovery:
// update hardware predictor
23: UDPRED R4, index
10’: ADD R3 Ä R4, 1
11’: SW 0(R8) Ä R3
12’: SW 0(R4) Ä R2
24: JMP Next

(c) New code after applying SVSS

17: ADD R8 Ä Label, 0
 7: AND R2 Ä R26, 255
 8: LW R4 Ä 0(R8)
// calculate software static stride prediction
21: ADD R9 Ä R9, stride
10: ADD R3 Ä R9, 1
11: SW 0(R8) Ä R3
12: SW 0(R4) Ä R2
// verify prediction
22: BNE Recovery R9, R4
Next:

Recovery:
// update software static stride predictor
23: MOVE R9 Ä R4
10’: ADD R3 Ä R4, 1
11’: SW 0(R8) Ä R3
12’: SW 0(R4) Ä R2
24: JMP Next

Figure 5.1 Examples of ILP transformation via VSS and SVSS.

Figure 5.2 (a) The data dependence graph for code in Figure 5.1(a). (b) The data
dependence graph for code in Figures 5.1(b) or 5.1(c). Thick edges and thick-circled

nodes are deleted or created by VSS or SVSS.

Height
0

1

2

3

4

|DDG0| = 5 |DDG1| = 4

17

8

11 12 7

10 7

21

22

(a) (b)

8

10

17

11 12

Height
0

1

2

3

4

5

E1

E2

E3

E5

E6

E7

E1

E5

E6

E7

E3

E8

E10

E9

E4

E4

89

In Figure 5.1(b), after applying VSS, three new operations are inserted: an

LDPRED, operation 21, generating a prediction from a hardware value predictor, a BNE,

operation 22, verifying the prediction with the correct result, and a UDPRED, operation

23, correcting the state of the hardware value predictor. Similarly, in Figure 5.1(c), after

applying SVSS, three new operations are inserted: an ADD, operation 21, providing a

prediction to register R9 by adding a static stride to its previous result, a BNE, operation

22, verifying the prediction with the correct result, and a MOVE, operation 23, storing

the correct result R4 to R9. For VSS and SVSS, the compiler is responsible for

generating recovery code to redirect program execution after value misprediction. After

applying VSS and SVSS, the original data dependence graph shown in Figure 5.2(a) is

collapsed, and the resultant data dependence graph shown in Figure 5.2(b) has a shorter

length with more instruction-level parallelism available for the scheduler to exploit

statically [22], [23] or dynamically [26].

To improve the performance of microprocessors via SVSS, two aspects should be

paid attention to: obtaining high prediction accuracies through the use of software static

stride value predictors and performing benefit analysis for SVSS. To obtain high

prediction accuracies, the optimum static stride value needs to be determined for each

predicted operation. The benefit analysis is necessary to know how many optimization

opportunities for SVSS exist in a program and where SVSS should be applied. As

presented in Chapters 3 and 4, the benefit analysis is performed by solving an optimal

edge selection problem in a data dependence graph. The optimal edge selection problem

involves finding an optimal set of edges (dependences) to break to obtain maximal

benefits. After determining which dependences should be broken, the following tasks for

90

the compiler become simple: inserting the software static stride value prediction,

breaking the dependence, generating recovery code, and scheduling operations

aggressively with newly exposed instruction-level parallelism.

5.2 Design and Analysis of Software Static Stride Value
Predictors

As shown in Figure 5.1(c), software static stride value predictors use an ADD

operation to generate a prediction by adding a constant value (static stride) to a register.

If the static stride value equals 0, the ADD operation can be eliminated. For the best

performance, the static stride values for operations are obtained through program

profiling [4], [7].

To reduce the profiling overhead to determine static stride values, two profiling

steps are performed: value prediction accuracy profiling and stride profiling. For the

value prediction accuracy profiling, operations are profiled using hardware stride value

predictors [4], [10], [13]. The first profile result contains the prediction accuracies of

operations using hardware stride value predictors. For the stride profiling, only

operations whose prediction accuracies are higher than 50% (from the first profile result)

are profiled again. The second profile results show how many different stride values

occur and how many times each distinct stride value appears for each profiled operation.

The two profiling steps have fewer overheads than performing the stride profiling only

once. Because unpredictable operations (in terms of using hardware stride value

predictors) may have many different stride values, the stride profiler must spend much

time searching a profile table and recording new strides into the table. Due to limitations

91

of memory space and table-searching time, performing the stride profiling only once may

be inefficient.

In our experiments, integer-register-writing operations in the top 20 treegions [17]

in the SPECint95 benchmarks were profiled. For the purpose of comparing the

performance of different value predictors, hardware stride and hardware stride two-delta

value predictors [10], [13] were experimented. (Note that the difference between

hardware stride and hardware stride two-delta value predictors is their stride update

policies. The stride of the former always equals the difference between the last two

actual results, but the latter updates the stride when the same stride appears at least twice

in a row.) Figure 5.3 shows the results of the first profiling using hardware stride and

hardware stride two-delta value predictors. The hardware stride two-delta value predictor

obtains higher prediction accuracies than the hardware stride value predictor, because the

two-delta stride update policy is better by tolerating one value misprediction before

changing strides. Using the hardware stride two-delta value predictor, 124.m88ksim has

the highest prediction accuracy of 88.83%, and is a good candidate for value speculation.

134.perl is the second with 78.02%. 147.vortex has the third highest value prediction

accuracy of 67.42%. 126.gcc, 129.compress, 130.li and 132.ijpeg have moderate value

prediction accuracies between 48.38% and 61.21%. 099.go has the lowest value

prediction accuracy of 34.37%, and may not be suitable for value speculation. The

average prediction accuracy using the hardware stride two-delta value predictor is

61.01%, which is higher than 54.78% by using the hardware stride value predictor.

92

Value Prediction Accuracies of Integer-Register-W riting O perations in
the Top 20 Treegions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pre
ss

13
0.

li

13
2.

ijp
eg

13
4.

per
l

14
7.v

orte
x

Arit
hm

et
ic

M
ea

n

S P ECint95

A
cc

u
ra

cy
Ha rdw a re -S tride Ha rdw a re -S tride 2d

Figure 5.3 Value prediction accuracies of integer-register-writing operations in the
top 20 treegions in SPECint95 using hardware stride and hardware stride two-delta

value predictors.

The D istr ibu t ion o f D ist inct S tr ide V alues for P red ictab le O perations
in the T op 20 Treeg ions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pre

ss
13

0.l
i

13
2.i

jp
eg

13
4.p

er
l

14
7.v

orte
x

Arit
hem

et
ic

Mea
n

S P EC in t95

P
er

ce
n

ta
g

e

1 2 3 4 5 6 7 8 9 10 11 ..99 100. .999 1000 . .9999 100000 . .

Figure 5.4 The distribution of distinct stride values for predictable operations in the
top 20 treegions in SPECint95.

93

Table 5.1 The top five stride values for predictable operations in SPECint95. In
each grid, the first number is a stride value and the second number in parentheses is

its corresponding percentage.

Rank 1 2 3 4 5

099.go 0 (97.46%) 4 (0.90%) 1 (0.78%) -4 (0.39%) 2 (0.16%)

124.m88ksim 0 (85.79%) 1 (4.55%) 12 (2.75%) 4 (2.54%) 24 (1.27%)

126.gcc 0 (95.50%) 1 (1.72%) 4 (1.68%) -4 (0.23%) 16128 (0.21%)

129.compress 0 (73.78%) 1 (10.27%) -64 (4.59%) -1 (2.43%) 8 (2.16%)

130.li 0 (83.09%) -60 (4.95%) 1 (2.62%) -1 (1.74%) 12 (1.74%)

132.ijpeg 0 (71.17%) 4 (7.22%) 1 (4.80%) 2 (3.07%) 32 (2.45%)

134.perl 0 (85.31%) 1 (4.03%) 4 (2.66%) 64 (1.90%) -1 (1.29%)

147.vortex 0 (96.34%) 4 (1.71%) 1 (1.44%) -4 (0.16%) 8 (0.16%)

After the value prediction accuracy profiling, the stride profiling was performed.

Figure 5.4 shows the distribution of distinct stride values for predictable operations in the

top 20 treegions. 60% of predictable operations have only one or two distinct stride

values. About 20% of predictable operations have more than 10 stride values. The

results in Figure 5.4 can show that the running time of the stride profiling is not high,

because most predictable operations have few distinct stride values. Table 5.1 shows the

top five stride values and their corresponding percentages in parentheses. In all

SPECint95 benchmarks, zero is the most frequent stride value, and it accounts for

between 71.17% and 97.46% of all stride values. This means that most of the predictable

operations generate the same value as the last result. Other stride values are 1, -1, 4, and

-4 appearing from the second to the fifth rank. Examining the source code, these stride

values occur when operations increase or decrease induction variables or pointers

(address registers) by 1 (equal to the size of char) or 4 (equal to the size of int). It is

94

interesting to note that most of the stride values are even numbers, and many of them are

the power of two, because the computer uses a binary system internally.

To fully obtain the performance of software static stride value predictors, one

important thing should be noted: the register for storing predicted values needs to be

preserved across procedures. This could be done by using load and store operations to

fill the register from the memory upon the procedure entrance and spill the register to the

memory upon the procedure exit. However, the filling and spilling code introduces

overhead that reduces the benefits from SVSS [23]. In this chapter, we propose using

global registers [32] to preserve predicted values to eliminate the overhead. Modern

microprocessors, MIPS R10000 [29], Alpha 21264 [30], and Intel Itanium [27], [28],

[31], [41] have 64, 80, 128 physical integer (or general) registers. In MIPS R10000 and

Alpha 21264, many registers are used for hardware register renaming or treated as local

registers. In Intel Itanium, there are 32 global (static) registers where 18 registers (r14-

r31) are scratch registers and may be utilized experimentally for the SVSS optimization.

From the experimental results in Section 5.3, up to 30 global registers were required for

implementing software static stride value predictors on the 20 most heavily executed

paths in each SPECint95 benchmark.

In the experiments, software static stride value predictors using global registers

and local registers were simulated. When using local registers, registers for

implementing software static stride value predictors are not preserved across procedures.

Figure 5.5 shows the value prediction accuracies using hardware stride, hardware stride

two-delta, software static stride (global), and software static stride (local) value predictors

for the same set of predictable operations in the SPECint95 benchmarks. The average

95

prediction accuracy using the software static stride (global) value predictor is 95.47%,

which is higher than 93.87% by using the hardware stride value predictor. The hardware

stride two-delta value predictor has the highest value prediction accuracy of 95.81%,

slightly better than the software static stride (global) value predictor. The software static

stride (local) value predictor suffers from losing register values across procedures and has

the lowest value prediction accuracy of 8.68% on an average. When using the software

static stride (local) value predictor, 124.m88ksim has the highest prediction accuracy of

34.20%, because many operations are inside intra-procedural loops and can be predicted

correctly without preserving registers across procedures (inter-procedurally).

Value Prediction Accuracies of Predictable Operations in the Top 20
Treegions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

09
9.

go

12
4.m

88
ks

im

12
6.

gcc

12
9.c

om
pre

ss
13

0.l
i

13
2.i

jp
eg

13
4.

per
l

14
7.

vo
rte

x

Arit
hm

et
ic

 M
ea

n

SPECint95

A
cc

u
ra

cy

Ha rdw a re -Stride Hardw a re -Stride 2d Softw are -Sta tic-Stride (globa l) Softw a re -Sta tic-Stride (loca l)

Figure 5.5 Value prediction accuracies using hardware stride, hardware stride two-
delta, software static stride (global), and software static stride (local) value
predictors for predictable operations in the top 20 treegions in SPECint95.

96

5.3 Experimental Results

For analyzing benefits, the optimal edge selection algorithm presented in Chapters

3 and 4 was performed on the 20 most heavily executed paths selected from each

SPECint95 benchmark. Figure 5.6 shows the speedup on the 20 most heavily executed

paths using hardware stride, hardware stride two-delta, and software static stride value

predictors. The speedup is calculated as the maximal benefit divided by the critical path

length of the original data dependence graph. In Figure 5.6, using hardware stride two-

delta value predictors and using software static stride value predictors obtain the same

speedup of 9.43% on an average, which is higher than that by using hardware stride value

predictors. When using software static stride value predictors, 124.m88ksim has the

highest speedup of 24.44%, because 124.m88ksim has the highest value prediction

accuracy as shown in Figure 5.3. 147.vortex has the second highest speedup of 17.50%.

099.go and 132.ijpeg have zero or very small speedups, because of their low value

prediction accuracies. The other benchmarks show significant speedups between 6% and

11% that are available for SVSS to exploit.

After running the benefit analysis, both maximal benefits and optimal sets of

edges for SPECint95 benchmarks were found. All SPECint95 benchmarks except 099.go

and 132.ijpeg were chosen for performing SVSS on the 20 most heavily executed paths.

The SPECint95 programs were compiled with classic optimizations by the IMPACT

compiler from the University of Illinois [18] and converted to the Rebel textual

intermediate representation by the Elcor compiler from Hewlett-Packard Laboratories

[19]. Then, the LEGO compiler [17] scheduled base code and SVSS-optimized code on a

16-issue VLIW machine model based on the Hewlett-Packard Laboratories HPL-PD

97

architecture [20]. All operations have a one-cycle latency except for load (two cycles),

floating-point add (two cycles), floating-point subtract (two cycles), floating-point

multiply (threes cycles) and floating-point divide (three cycles).

The Speedup on the 20 Most Heavily Executed Paths

0%

5%

10%

15%

20%

25%

30%

09
9.

go

12
4.m

88
ks

im

12
6.

gcc

12
9.

co
m

pre
ss

13
0.l

i

13
2.i

jp
eg

13
4.

per
l

14
7.v

orte
x

Arit
hm

et
ic

Mea
n

SPECint95

P
er

ce
n

ta
g

e

Ha rdw a re -Stride Hardw a re -Stride 2d Softw a re -Sta tic-Stride

Figure 5.6 The speedup on the 20 most heavily executed paths in each SPECint95
benchmark using hardware stride, hardware stride two-delta, and software static

stride value predictors. (Note that 099.go has no speedups in all cases.)

As described in Section 5.2, global registers are used for preserving predicted

values across procedures. Table 5.2 shows the number of global registers required for

implementing software static stride value predictors on the 20 most heavily executed

paths. 124.m88ksim requires 30 global registers, which is the most. Other benchmarks

need between 6 and 11 global registers. In the experiments, in additional to the 128

integer registers, up to 30 global registers were used for the compiler to implement

software static stride value predictors.

98

Table 5.2 The number of global registers required for implementing software static
stride value predictors on the 20 most heavily executed paths in SPECint95.

SEPCint95 124.m88ksim 126.gcc 129.compress 130.li 134.perl 147.vortex

of Global

Registers

30 9 6 6 11 11

Table 5.3 Three 16-issue VLIW machine models.

Machine Configuration

Model 1 Dispatch/issue/retire bandwidth: 16

Universal functional units: 16

I-Cache: ideal

D-Cache: ideal

Branch predictor: ideal

Model 2 Dispatch/issue/retire bandwidth: 16

Universal functional units: 16

I-Cache: Compressed (zero-nop) and two banks with 64k bytes [33]

 Line size = 16 operations (each bank)

 Miss penalty = 12 cycles

D-Cache: Size/assoc./repl. = 64kB/4-way/LRU

 Line size = 32 bytes

 Miss penalty = 14 cycles

Branch predictor: multi-way branch prediction [34], [35]

 Branch prediction table (BPT) = 214 entries

 Branch target buffer (BTB) entry/assoc./repl. = 214/8-way/LRU

Branch misprediction stalls = 5 cycles

Model 3 Same as Model 2 except branch misprediction stalls = 10 cycles

Trace simulation was performed for three different 16-issue VLIW machine

models shown in Table 5.3. In Table 5.3, Model 1 represents an ideal machine model

without I-Cache stalls, D-Cache stalls, and branch misprediction penalties. Model 2

represents a realistic model with a 64k-byte compressed I-Cache [33], a 64k-byte D-

99

Cache, and a multi-way branch predictor [34], [35] that has five-cycle stalls, 214 entries in

the branch prediction table (BPT), and 214 entries in the branch target buffer (BTB).

Model 3 has a similar configuration to Model 2, but its branch misprediction stalls are 10

cycles. Figure 5.7 shows the execution time speedup of SVSS-optimized code over base

code (without applying SVSS) on three machine models. By using Model 1, all SVSS-

optimized programs have positive speedups that represent ideal program execution in the

processor pipeline. 147.vortex gets the highest speedup of 14.58%, and 124.m88ksim is

second with 10.37%. 129.compress and 130.li have moderate speedups, around 2.5%.

However, 126.gcc and 134.perl have small speedups of 1%. When using Model 2 and

Model 3, all benchmarks except 147.vortex suffer from the side effect of speculative

execution on the I-Cache, D-Cache, and multi-way branch predictor. The increased stalls

from the I-Cache, D-Cache, and branch predictor decrease the speedups of SVSS-

optimized code over base code from 5.25% (Model 1) to 4.10% (Model 2) and 3.67%

(Model 3) on a harmonic average. However, 147.vortex is the exception, which yields

better speedups on Model 2 and Model 3 than on Model 1. The reason is that SVSS-

optimized code has fewer branch misprediction stalls than base code does. After

applying SVSS, the control flow in 147.vortex is changed, so that the multi-way branch

predictor can predict BNE branches that verify predicted values and other branches more

accurately. Using Model 2 and Model 3 enlarges the execution time difference between

SVSS-optimized code and base code of 147.vortex. 126.gcc and 134.perl have negative

speedups on Model 2 and Model 3. Because their ideal speedups are small on Model 1,

the increased I-Cache, D-Cache, branch misprediction stalls counteract the benefits from

the SVSS optimization.

100

The Execution Time Speedup of SVSS-Optimized Code over Base
Code

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

12
4.m

88
ks

im

12
6.

gcc

12
9.c

om
pre

ss
13

0.l
i

13
4.

per
l

14
7.

vo
rte

x

Har
m

onic
Mea

n

SPECint95

S
p

ee
d

u
p

Model1 Model2 Model3

Figure 5.7 The execution time speedup of SVSS-optimized code using software static
stride value predictors over base code. (Note that the speedups of 126.gcc are

slightly less than 1.00 on Models 2 and 3.)

5.4 Summary

In this chapter, we propose software-only value speculation scheduling (SVSS) to

improve the performance of microprocessors by utilizing software static stride value

predictors. SVSS has the advantage of being applicable to existing microprocessors

without adding new hardware value predictors and modifying processor pipelines. From

the experimental results, the prediction accuracy using the software static stride value

predictor is comparable to that using the hardware stride two-delta value predictor. The

benefit analysis shows that by using the software static stride value predictor, averaging

9.43% of critical path reduction can be obtained on the 20 most heavily executed paths in

101

each SPECint95 benchmark. The overall execution time speedup of SVSS-optimized

code over base code on a 16-issue VLIW machine model is encouraging with up to 15%,

and averaging 4%.

Future work will include the design of new software value predictors to predict

operations with different patterns other than strides. The SVSS scheme can be

experimented in Intel Itanium [27], [28], [31], [41] to evaluate the effectiveness of value

speculation. For architectures that have very few global registers available for the

compiler usage, a new register file may be created. Special-purpose ADD and MOVE

operations can access the new register file to implement software static stride value

predictors for the SVSS optimization.

102

Chapter 6

Hardware-Based Value Profiling

Program profiling [4], [7], [39] is a mechanism to collect information about a

program. The profile results may include execution frequencies of basic blocks, miss

rates of the I-Cache or D-Cache, prediction accuracies of branches or operations, and the

distribution of executed operations. Several applications [22], [23], [39] utilize different

kind of profile information. For the VSS optimization [22], the compiler relies on the

predictability of operations to make judicious decisions of selecting and breaking flow

dependences. To obtain the prediction accuracies of operations, the program is

instrumented with additional code that simulates hardware value predictors. Then,

running the instrumented program with training inputs generates the value prediction

accuracies of profiled operations. The process of program profiling has the disadvantage

of large overheads when running the instrumented program. Also, the training inputs for

program profiling must be the representative to other runs, such that the profile

information may be useful for program optimization.

103

Compared to program profiling, hardware-based profiling [37], [40] is a better

technique to gather information at run-time with fewer overheads and more accuracies to

actual usage of a program. In this chapter, we adopt the same concept of hardware-based

profiling [37], [40] and propose hardware-based value profiling to recognize highly

predictable operations at run-time. An augmented value predictor that has between 16

and 256 entries is experimented to profile operations at the retirement stage. Each entry

in the value predictor contains a tag and a saturating profile counter. The tag stores the

instruction pointer (PC) or the compiler-assigned index of the operation. The profile

counter indicates the predictability of operations. Upon context-switches or interrupts,

the tags with the maximum saturating counter values are stored to memory, so only

highly predictable operations are recorded. From the experimental results, hardware-

based value profiling can accurately identify highly predictable operations. Using the

value predictor with 256 entries gathers 25% of static profiled operations that account for

43% of dynamic profiled operations. The collected operations have very high prediction

accuracies of 94% that can be utilized by the VSS optimization.

The remainder of this chapter is organized as follows. Section 6.1 measures the

profile shifts under different input sets to investigate if the profile information remains

invariant. The profile invariance is important to all profile-driven optimizations. Section

6.2 proposes a scheme of hardware-based value profiling. Section 6.3 presents

experimental results of hardware-based value profiling. Section 6.4 concludes this

chapter.

104

6.1 Profile Invariance

The profile results are useful for program optimization only if the collected

information remains invariant among different runs. The invariant characteristics are

important to design hardware-based value profiling as well. In this section, the

predictability of operations is profiled using different inputs to measure the profile shift.

The results of the profile shift will guide us to design a scheme of hardware-based value

profiling.

In the experiments, the SPECint95 benchmark suite was used with three different

input sets, train, test, and ref, which are shown in Tables 6.1, 6.2, and 6.3. All integer-

register-writing operations in each SPECint95 program were profiled using a hybrid

value predictor [13], [22]. The hybrid value predictor [13], [22] contains stride [4], [10],

[13] and context-based value predictors [10], [11]. The value prediction table size equals

the number of all integer-register-writing operations in each SPECint95 program. For the

stride value predictor, each entry records the last actual result and the stride of the last

two values. Adding the last value and the stride generates a prediction. For the context-

based value predictor, the entry in the first level table records one actual result that

indexes a local second level table with 16 entries to generate a prediction. The hybrid

predictor selects a prediction between the stride value predictor and the context-based

value predictor based on counters associated with each value predictor. When the value

predictor generates a correct prediction, the counter increases by three, and up to twelve.

In the case of value misprediction, the counter decreases by one, and down to zero.

105

Table 6.1 The train input set for the SPECint95 benchmarks.

SPECint95 Train Inputs

099.go go 50 9 2stone9.in

124.m88ksim m88ksim -c < ctl.raw

126.gcc gcc -quiet -funroll-loops -fforce-mem -fcse-follow-jumps -fcse-skip-blocks -

fexpensive-optimizations -fstrength-reduce -fpeephole -fschedule-insns -

finline-functions -fschedule-insns2 -O amptjp.i -o amptjp.s

129.compress compress95 < test.in

130.li li train.lsp

132.ijpeg ijpeg -image_file vigo.ppm -compression.quality 90 -

compression.optimize_coding 0 -compression.smoothing_factor 90 -

difference.image 1 -difference.x_stride 10 -difference.y_stride 10 -verbose 1 -

GO.findoptcomp > vigo.out

134.perl perl jumble.pl < jumble.in

147.vortex vortex vortex.raw

Table 6.2 The test input set for the SPECint95 benchmarks.

SPECint95 Test Inputs

099.go go 40 19 null.in

124.m88ksim m88ksim -c < ctl.raw

126.gcc gcc -quiet -funroll-loops -fforce-mem -fcse-follow-jumps -fcse-skip-blocks -

fexpensive-optimizations -fstrength-reduce -fpeephole -fschedule-insns -

finline-functions -fschedule-insns2 -O cccp.i -o cccp.s

129.compress compress95 < test.in

130.li li test.lsp

132.ijpeg ijpeg -image_file specmun.ppm -compression.quality 90 -

compression.optimize_coding 0 -compression.smoothing_factor 90 -

difference.image 1 -difference.x_stride 10 -difference.y_stride 10 -verbose 1 -

GO.findoptcomp > specmun.out

134.perl perl primes.pl < primes.in

147.vortex vortex vortex.raw

106

Table 6.3 The ref input set for the SPECint95 benchmarks.

SPECint95 Ref Inputs

099.go go 50 21 9stone21.in

124.m88ksim m88ksim -c < ctl.raw

126.gcc gcc -quiet -funroll-loops -fforce-mem -fcse-follow-jumps -fcse-skip-blocks -

fexpensive-optimizations -fstrength-reduce -fpeephole -fschedule-insns -

finline-functions -fschedule-insns2 -O 2stmt.i -o 2stmt.s

129.compress compress95 < bigtest.in

130.li li *.lsp

132.ijpeg ijpeg -image_file penguin.ppm -compression.quality 90 -

compression.optimize_coding 0 -compression.smoothing_factor 90 -

difference.image 1 -difference.x_stride 10 -difference.y_stride 10 -verbose 1 -

GO.findoptcomp > penguin.out

134.perl perl primes.pl < primes.in

147.vortex vortex vortex.raw

Table 6.4 Statistics of total static and dynamic operations in the SPECint95
benchmarks using train, test and ref input sets.

Input Sets Train Test Ref

Static Dynamic Static Dynamic Static Dynamic

099.go 28,189 297,736,250 33,056 9,122,826,104 32,723 18,617,385,077

124.m88ksim 3,682 72,999,794 4,362 274,921,513 5,537 41,943,677,738

126.gcc 76,174 625,895,979 75,280 616,745,988 70,883 272,487,688

129.compress 543 25,210,466 485 2,778,460 632 29,861,979,006

130.li 1,677 106,801,597 1,584 588,167,531 2,342 34,095,697,502

132.ijpeg 6,866 1,193,881,971 6,771 436,352,849 6,798 24,697,603,777

134.perl 7,098 939,198,744 5,219 4,503,008 5,225 8,089,016,397

147.vortex 33,067 1,414,769,366 33,172 5,116,326,427 33,132 43,854,292,815

Average 19,662 584,561,771 19,991 2,020,327,735 19,659 25,179,017,500

After program profiling, the statistics of operations using train, test, and ref input

sets are shown in Table 6.4. Each input set contains two columns, static and dynamic.

107

The number in the static column indicates the number of static operations that are

executed, and the number of static operations multiplying the execution frequency

generates the number in the dynamic column. For all three input sets, the average

numbers of static operations are close, 19,662 (train), 19,991 (test), and 19,659 (ref).

However, the average numbers of dynamic operations are very different in three input

sets. The train input set has the fewest dynamic operations of 584 million. The test input

set contains 2 billion dynamic operations, and the ref input set has the most dynamic

operations of 25 billion.

Based on the profile results of value prediction accuracies by running the train

input set, the profile shift against the test input set is presented in Figures 6.1 and 6.2, and

the profile shift against the ref input set is presented in Figures 6.3, and 6.4. In Figure

6.1, the value prediction accuracies of all profiled operations that appear both in the train

and test input sets are compared. In Figure 6.2, only operations that have prediction

accuracies higher than 90% in the train input set are further considered to be compared

with operations in the test input set. The profile shift is calculated as the value prediction

accuracy difference of operations between two different input sets. Figures 6.1 and 6.2

show the distribution of the value prediction accuracy differences between the train and

test input sets. In Figure 6.1, averaging 80% of all profiled operations have value

prediction accuracy differences less than 10%. In Figure 6.2, averaging 95% of

predictable operations have value prediction accuracy differences less than 10%. This

shows that under different input sets, highly predictable operations are more invariant

than all operations are.

108

Profile Shift between Train and Test Input Sets for All Operations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pre

ss

13
0.l

i

13
2.i

jp
eg

13
4.p

er
l

14
7.v

orte
x

Arit
hm

et
ic

 M
ea

n

SPECint95

P
er

ce
n

ta
g

e

0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80% 80%-90% 90%-100%

Figure 6.1 Profile shift between train and test input sets for all integer operations.

Profile Shift between Train and Test Input Sets for Predictable
Operations

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pre

ss

13
0.l

i

13
2.i

jp
eg

13
4.p

er
l

14
7.v

orte
x

Arit
hm

et
ic

 M
ea

n

SPECint95

P
er

ce
n

ta
g

e

0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80% 80%-90% 90%-100%

Figure 6.2 Profile shift between train and test input sets for predictable integer
operations whose prediction accuracies are higher than 90%.

109

Profile Shift between Train and Ref Input Sets for All Operations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pre

ss

13
0.l

i

13
2.i

jp
eg

13
4.p

er
l

14
7.v

orte
x

Arit
hm

et
ic

 M
ea

n

SPECint95

P
er

ce
n

ta
g

e

0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80% 80%-90% 90%-100%

Figure 6.3 Profile shift between train and ref input sets for all integer operations.

Profile Shift between Train and Ref Input Sets for Predictable
Operations

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pre

ss

13
0.l

i

13
2.i

jp
eg

13
4.p

er
l

14
7.v

orte
x

Arit
hm

et
ic

 M
ea

n

SPECint95

P
er

ce
n

ta
g

e

0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80% 80%-90% 90%-100%

Figure 6.4 Profile shift between train and ref input sets for predictable integer
operations whose prediction accuracies are higher than 90%.

110

Comparing the benchmarks in Figure 6.2, 132.ijpeg and 147.vortex are the most

invariant programs that have almost 100% of predictable operations with value prediction

accuracy differences less than 10%. However, 124.m88ksim and 134.perl have 40% and

20% of predictable operations that experience more than 10% of value prediction

accuracy differences between the train and test input sets. The operations with varied

predictability may hurt the program performance, if they are selected for the VSS

optimization.

Figures 6.3 and 6.4 show the distribution of the value prediction accuracy

differences between the train and ref input sets. Figure 6.3 has the similar trend to Figure

6.1. Averaging 80% of static operations have value prediction accuracy differences less

than 10%. However, Figure 6.4 shows better profile invariance than Figure 6.2 does.

Especially for 124.m88ksim, more than 85% of predictable operations have value

prediction accuracy differences less than 10%. It means that in 124.m88ksim, the

executed operations are strongly correlated between the train and ref input sets. From the

results of Figure 6.4, if the ref input set is the input that the user runs, the profile

information from running the train input set will be good feedbacks to perform the VSS

optimization.

From Figures 6.2 and 6.4, predictable operations are more invariant than all

operations. Also, from the optimization’s point of view, the highly predictable operations

are candidates for the VSS optimization. Therefore, a scheme of hardware-based value

profiling is designed to identify and collect highly predictable operations.

111

6.2 Hardware-Based Value Profiling

Based on the profile invariance of predictable operations in Section 6.2, a scheme

of hardware-based value profiling is proposed in Figure 6.5 to collect highly predictable

operations. The process of hardware-based value profiling occurs at the retirement stage,

such that it is not on the critical path of the processor pipeline. In Figure 6.5, the scheme

of hardware-based value profiling can be applied to different prediction mechanisms,

e.g., last value prediction [2], [3], stride value prediction [4], [10], [13], context-based

value prediction [10], [11], or hybrid value prediction [13], [22].

Figure 6.5 A scheme of hardware-based value profiling.

In Figure 6.5, each entry of the value prediction table has two new fields: a tag

and a saturating profile counter. The tag records an instruction pointer (PC) or a

Value Prediction Table Tag Counter

CMP

Instruction
Pointer or
Compiler-
Assigned
Index

Actual
Result

Prediction

Prediction
Mechanism

112

compiler-assigned index. The counter indicates the predictability of operations. The

processes of hardware-based value profiling are as follows. When an integer operation

retires, the actual result of the operation is available to be profiled. First, the instruction

pointer or the compiler-assigned index selects one entry in the value predictor. Second,

the tag from the selected entry is compared with the current index. If they are different,

the counter value is read and checked against a threshold. If the current counter value is

greater than the threshold, the profiling process stops and nothing happens. The

threshold is used to favor predictable operations to occupy the selection entries longer.

Third, if the profiling process continues and the old tag is different, the current index is

stored to the tag field and the counter value is reset to zero. Fourth, the value predictor

generates a prediction based on its prediction mechanism. Fifth, the comparison between

the prediction and the actual result is used to update the saturating profile counter. If the

prediction is correct, the counter value increases by an amount, up to a maximal value.

Otherwise, the counter value decreases by an amount, down to zero. Also, the value

predictor is updated by the actual result for future predictions.

Upon context-switches or interrupts, the profile information in the value

prediction table can be recorded. To favor highly predictable operations and reduce the

overhead of storing data, only the tags with the maximal saturating counter values are

stored to the memory. After recording the tags, all tags and counters in the value

prediction table are reset to zero for the next profiling run. From [37] and [40],

hardware-based branch profiling has a slowdown of 1.02 on an average, and 1.05 at a

worst case. Because hardware-based value profiling uses the similar scheme to

hardware-based branch profiling, the slowdown is expected to be small.

113

6.3 Experimental Results

In this section, the scheme of hardware-based value profiling using the hybrid

value predictor, which is described in Section 6.1, was experimented. The saturating

profile counter increased by 1, up to 15, and decreased by 5, down to 0. The threshold

value of the profile counter was 8. As described in Section 6.2, if the current counter

value is less than 8, the new profiled operation can continue the profiling process by

replacing the tag and resetting the counter to zero. The interrupt occurred every one

million profiled operations to store the tag fields to the memory. The value prediction

table size was varied with 16, 32, 64, 128, and 256 entries. The compiler selected

integer-register-writing operations in the top 20 treegions [17] for hardware-based value

profiling, and sequentially assigned the indices to the profiled operations. For comparing

the performance, program profiling [4], [7] using the hybrid value predictor was

experimented. The results of program profiling serve as the upper bound for the scheme

of hardware-based value profiling to compare, because program profiling does not

encounter conflicts in the simulated value prediction table.

Table 6.5 shows the number of static operations, the number of dynamic

operations, and the prediction accuracies using program profiling. In Table 6.5, 126.gcc

has the most static operations of 13,567, and 129.compress has the fewest static

operations of 543. The average number of static operations is 3,872. If there are too

many static operations to be profiled, the conflicts in the value prediction table will

increase under the scheme of hardware-based value profiling. The value prediction

accuracies using the hybrid predictor vary in different benchmarks, and the average

prediction accuracy is 61.05%.

114

Table 6.5 Statistics of profiled operations and prediction accuracies using program
profiling.

SPECint95 # of Static

Operations

of Dynamic

Operations

Prediction

Accuracies

099.go 5,805 261,702,531 32.42%

124.m88ksim 1,619 69,550,441 90.18%

126.gcc 13,567 339,029,896 57.58%

129.compress 543 25,210,466 66.54%

130.li 784 102,766,436 50.75%

132.ijpeg 2,394 1,127,763,347 45.14%

134.perl 2,837 896,156,199 79.65%

147.vortex 3,428 1,040,658,220 66.10%

Arithmetic Mean 3,872 482,854,692 61.05%

Table 6.6 Statistics of profiled operations whose value prediction accuracies are
higher than 90% using program profiling.

SPECint95 Percentage of static

operations whose

accuracies > 90%

Percentage of dynamic

operations whose accuracies

> 90%

099.go 18.35% 14.46%

124.m88ksim 49.41% 80.75%

126.gcc 39.29% 32.99%

129.compress 63.35% 58.11%

130.li 33.16% 26.09%

132.ijpeg 43.94% 22.46%

134.perl 40.85% 68.09%

147.vortex 38.77% 55.99%

Arithmetic Mean 40.89% 44.86%

The percentages of static and dynamic predictable operations whose prediction

accuracies are higher than 90% using program profiling are shown in Table 6.6. These

115

numbers will be used to evaluate the coverage of predictable operations when using

hardware-based value profiling. The average percentages of static and dynamic

predictable operations are 40.89% and 44.86%. In Table 6.5, 124.m88ksim has the

highest value prediction accuracy of 90.18%, so the percentage of dynamic predictable

operations is the most among the SPECint95 benchmarks.

Figures 6.6 and 6.7 show the percentages of static and dynamic operations that are

selected and stored to the memory by using hardware-based value profiling with 16, 32,

64, 128, and 256 entries in the value predictor. For all benchmarks, the percentage of

selected static operations increases when the number of value predictor entries increases,

because fewer conflicts occur in the value prediction table. When doubling the table size

from 16 to 32, 64, 128, 256 entries, the coverage of static and dynamic predictable

operations increases for most of the cases. The diminishing return appears when

doubling from 128 to 256 entries. In 126.gcc, because 13,567 operations are selected to

be profiled, many conflicts in the value prediction table affect the number of predictable

operations that can be recorded by hardware-based value profiling. In Figure 6.6, using

the value predictor with 256 entries collects 25% of static operations on an average. As

shown in Table 6.6, the average percentage of static operations whose prediction

accuracies are higher than 90% is 40%, which is 15% more than the percentage by using

hardware-based value profiling with 256 entries. However, in Figure 6.7, using

hardware-based value profiling with 256 entries covers 43% of dynamic operations,

which are very similar to the percentage of dynamic operation whose accuracies are

higher than 90% by using program profiling that is shown in Table 6.6.

116

Static Operations Selected by Hardware-Based Value Profiling

0%

5%

10%

15%

20%

25%

30%

35%

40%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pre

ss

13
0.l

i

13
2.i

jp
eg

13
4.p

er
l

14
7.v

orte
x

Arit
hm

et
ic

 M
ea

n

SPECint95

P
er

ce
n

ta
g

e
16-entry 32-entry 64-entry 128-entry 256-entry

Figure 6.6 Statistics of static operations selected by hardware-based value profiling.

Dynamic Operations Selected by Hardware-Based Value Profiling

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pre

ss

13
0.l

i

13
2.i

jp
eg

13
4.p

er
l

14
7.v

orte
x

Arit
hm

et
ic

 M
ea

n

SPECint95

P
er

ce
n

ta
g

e

16-entry 32-entry 64-entry 128-entry 256-entry

Figure 6.7 Statistics of dynamic operations selected by hardware-based value
profiling.

117

Value Prediction Accuracies of Operations Selected by Hardware-
Based Value Profiling

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pre

ss

13
0.l

i

13
2.i

jp
eg

13
4.p

er
l

14
7.v

orte
x

Arit
hm

et
ic

 M
ea

n

SPECint95

A
cc

u
ra

cy
16-entry 32-entry 64-entry 128-entry 256-entry

Figure 6.8 Value prediction accuracies of operations selected by hardware-based
value profiling. Some value prediction accuracies are zeros, because no operations

are collected under these schemes.

Figure 6.8 shows the value prediction accuracies of operations that are collected

by hardware-based value profiling with 16, 32, 64, 128, and 256 entries. Some value

prediction accuracies are zero in Figure 6.8, because no operations are collected under

these schemes. Using different sizes of the value prediction table, the average value

prediction accuracies are around or above 90%. Profiled operations in 124.m88ksim,

129.compress, and 147.vortex have very high prediction accuracies of 98%. The highly

predictable operations can be utilized by the VSS optimization. For all benchmarks, by

using different value prediction table sizes, the average prediction accuracies are around

94%. Figure 6.8 can show that hardware-based value profiling accurately collects highly

predictable operations.

118

One application of hardware-based value profiling is to feed the collected highly

predictable operations to perform the VSS optimization. As described in Chapter 4,

solving an optimal edge selection problem in a data dependence graph serves as a

compilation phase of the benefit analysis. For the benefit analysis, the value

misprediction rates and branch misprediction rates are required to model the penalties for

mispredicting operations (from Figure 3.5). However, hardware-based value profiling

only records the indices of profiled operations that have maximal saturating counter

values upon context-switches or interrupts. As shown in Figure 6.9, the value

misprediction rates and branch misprediction rates need to be synthesized for the scheme

of hardware-based value profiling. In Figure 6.9, the number of occurrences for each

index is used to calculate the value misprediction rate. The branch misprediction rate is

set to be the same as the value misprediction rate, because highly value-predictable

operations have corresponding highly predictable BNE branches (from Figure 3.14).

Value_misprediction_rate = 1 / (15 ^ number_of_occurrences)

Branch_misprediction_rate = Value_misprediction_rate

Figure 6.9 The synthesized value misprediction rates and branch misprediction
rates for the scheme of hardware-based value profiling.

Based on the synthesized value misprediction rates and branch misprediction rates

for the scheme of hardware-based value profiling with 256 entries, the VSS optimization

was performed on all SPECint95 benchmarks except for 099.go and 132.ijpeg. For

comparison, the VSS optimization was also performed based on the results of program

profiling. Figure 6.10 shows the execution time speedup of VSS-optimized code over

119

base code using the feedbacks from program profiling and hardware-based value

profiling. The machine model is the same as Model 2 in Table 5.3 with the I-Cache, D-

Cache, and multi-way branch predictor with 5-cycle stalls.

In Figure 6.10, for all benchmarks except 147.vortex, using the feedbacks from

program profiling to perform VSS obtains larger speedups than using the synthesized

data from hardware-based value profiling. The differences of speedups are significant.

The reason is that program profiling gathers precise value prediction accuracies of

operations, so that the benefit analysis can accurately find an optimal set of dependences

to be broken via VSS. However, 147.vortex, which contains many very highly

predictable operations, is the exception. Because the synthesized data for 147.vortex

indicates that many operations are highly predictable, the VSS optimization is performed

more aggressively under the scheme of hardware-based value profiling than under

program profiling, and the resultant speedup is higher. In 126.gcc and 134.perl, the

speedups are negative when using the feedbacks from hardware-based value profiling,

because too many candidates are selected for the VSS optimization and resultant

penalties for value-speculative execution increase.

For all benchmarks, the harmonic average speedup using program profiling is

5.5% that is higher than 3.5% using hardware-based value profiling. In general, using the

feedbacks from hardware-based value profiling enables more candidates for the VSS

optimization. The aggressive VSS optimization hurts the performance for most of the

benchmarks. In future work, for the scheme of hardware-based value profiling, the

synthesized value misprediction rates and branch misprediction rates can be adjusted to

be higher for performing the VSS optimization conservatively.

120

Execution Time Speedup of VSS-Optimized Code over Base Code

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pre

ss

13
0.l

i

13
4.p

er
l

14
7.v

orte
x

Har
m

onic
M

ea
n

SPECint95

S
p

ee
d

u
p

Program Profiling Hardware-Based Value Profiling

Figure 6.10 The execution time speedup of VSS-optimized code over base code using
the feedbacks from program profiling and hardware-based value profiling.

6.4 Summary

In this chapter, hardware-based value profiling is proposed to reduce the overhead

of program profiling and eliminate the need of profile training inputs. From the

experimental results of running different input sets for the SPECint95 benchmarks, the

highly predictable operations are invariant and need to be collected by hardware-based

value profiling. The value predictor with additional tag and counter fields is proposed as

the scheme of hardware-based value profiling. At the retirement stage, operations access

the value predictor and update the tag and counter fields. Upon context-switches or

interrupts, the tags with the maximal saturating counter values are stored to the memory

121

for recording predictable operations. In the experiments, using the value predictor with

16, 32, 64, 128, and 256 entries obtains the increasing coverage of predictable operations.

Using the value predictor with 256 entries collects almost all dynamic predictable

operations in a program. Moreover, the recorded operations by hardware-based value

profiling have very high value prediction accuracies of 94% on an average. This shows

that hardware-based value profiling is accurate to identify highly predictable operations.

The VSS optimization is also experimented based on the feedbacks from hardware-based

value profiling, and yields the speedups of up to 19% and averaging 3.5%.

122

Chapter 7

Conclusions and Future work

This thesis has proposed compiler-driven value speculation scheduling to exploit

the predictability for the values generated by register-writing operations to improve the

performance of microprocessors. The value speculation scheduling (VSS) technique

leverages advantages of both hardware schemes for value prediction and compiler

schemes for exposing ILP. Two new predicting and updating operations, LDPRED and

UDPRED, are designed to be the interface between value prediction hardware and

program code. The VSS algorithm utilizes LDPRED and UDPRED operations to break

critical paths in a program to shorten execution time. Future work will include the

investigation of new applications that utilize LDPRED and UDPRED operations to

improve the performance. The correlation between different operations can improve the

prediction accuracies of operations. The LDPRED and UDPRED operations can be re-

designed by using register values as the indices to access the value predictor. Thus,

123

control correlation of program flow and value correlation of linked data structures can be

captured to enhance the predictability of operations.

To improve the techniques for value speculation, the value speculation model has

been proposed as solving an optimal edge selection problem in a data dependence graph.

An efficient algorithm has been designed based on three properties observed from the

optimal edge selection problem. The selected dependences are then exposed to the

hardware or the compiler to obtain maximal benefits from value speculation. In future

work, the value speculation model can be broadened to target not only register flow

dependences but also memory dependences between load and store operations. The

integrated model can serve as a compilation phase of benefit analysis to select flow

dependences via value speculation [22] and memory dependences via data speculation

[1], [41].

Without any modification to the hardware, software-only value speculation

scheduling (SVSS) has been proposed to improve the performance of existing

microprocessors. Significant speedups have been shown for using the software static

stride value predictor to optimize the SPECint95 programs. Future work will include the

design of new software value predictors to predict operations with different patterns, so

that the SVSS scheme can optimize more predictable operations.

Hardware-based value profiling has been investigated to accurately collect highly

predictable operations at run-time for reducing the overhead of program profiling and

eliminating the need of profile training inputs. The VSS optimization has been

experimented based on the feedbacks from hardware-based value profiling. In future

work, the results of hardware-based value profiling can assist dynamic optimization [38].

124

The utilization of hardware-based value profiling and the invocation of performing the

VSS optimization can be integrated together to improve the performance dynamically.

In this thesis, the VSS and SVSS schemes have been experimented on VLIW

architectures and have showed encouraging speedups in the SPECint95 benchmarks.

Besides statically-scheduled machines, the VSS and SVSS optimizations can be applied

to dynamically-scheduled machines as well. Future work will experiment VSS and

SVSS on different architectures to investigate the effectiveness of the techniques.

Overall, this thesis provides a promising way of applying value prediction and value

speculation to future microprocessors.

125

References

[1] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhall, W. W. Hwu, “Dynamic
Memory Disambiguation Using the Memory Conflict Buffer,” Proceedings of the 6th
International Conference on Architecture Support for Programming Languages and
Operating Systems, October 1994.

[2] M. H. Lipasti, C. B. Wilkerson, J. P. Shen, “Value Locality and Load Value

Prediction,” Proceedings of the 7th International Conference on Architecture Support
for Programming Languages and Operating Systems, October 1996.

[3] M. H. Lipasti and J. P. Shen, “Exceeding the Dataflow Limit via Value Prediction,”

Proceedings of the 29th International Symposium on Microarchitecture, December
1996.

[4] F. Gabbay and A. Mendelson, “Can Program Profiling Support Value Prediction?”

Proceedings of the 30th International Symposium on Microarchitecture, December
1997.

[5] F. Gabbay and A. Mendelson, “The Effect of Instruction Fetch Bandwidth on Value

Prediction,” Proceedings of the 25th International Symposium on Computer
Architecture, June 1998.

[6] F. Gabbay, “Speculative Execution based on Value Prediction,” EE Department TR

#1080, Technion, November 1996.

[7] B. Calder, P. Feller, and A. Eustace, “Value Profiling,” Proceedings of the 30th

International Symposium on Microarchitecture, December 1997.

[8] B. Calder, G. Reinman, and D. Tullsen, “Selective Value Prediction,” Proceedings of
the 26th International Symposium on Computer Architecture, May 1999.

126

[9] E. Tune, D. Liang, D. Tullsen, and B. Calder, “Dynamic Prediction of Critical Path
Instructions,” Proceedings of the 7th International Symposium on High Performance
Computer Architecture, January 2001.

[10] Y. Sazeides and J. E. Smith, “The Predictability of Data Values,” Proceedings of

the 30th International Symposium on Microarchitecture, December 1997.

[11] Y. Sazeides and J. E. Smith, “Implementation of Context Based Value
Predictors,” Technical Report ECE-97-8, University of Wisconsin-Madison,
December 1997.

[12] Y. Sazeides and J. Smith, “Modeling Program Predictability”, Proceedings of the

25th International Symposium on Computer Architecture, June 1998.

[13] K. Wang and M. Franklin, “Highly Accurate Data Value Prediction using Hybrid

Predictors,” Proceedings of the 30th International Symposium on Microarchitecture,
December 1997.

[14] R. Sathe and M. Franklin, “Available Parallelism with Data Value Prediction”,

Proceedings of the 5th International Conference on High Performance Computing,
December 1998.

[15] M. Burstscher and B. G. Zorn, “Exploring Last n Value Prediction,” Proceedings

of the 1999 International Conference on Parallel Architectures and Compilation
Techniques, October 1999.

[16] T. Nakra, R. Gupta, and M. L. Soffa, “Global Context-Based Value Prediction,”

Proceedings of the 5th International Symposium on High Performance Computer
Architecture, January 1999.

[17] W. A. Havanki, S. Banerjia, and T. M. Conte, “Treegion Scheduling for Wide-

Issue Processors,” Proceedings of the 4th International Symposium on High
Performance Computer Architecture, February 1998.

[18] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.

Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D.
M. Lavery, “The Superblock: An Effective Technique for VLIW and Superscalar
Compilation,“ The Journal of Supercomputing, January 1993.

[19] S. Aditya, V. Kathail, and B. R. Rau, “Elcor’s Machine Description System:

Version 3.0,” Hewlett-Packard Laboratories Technical Report HPL-98-128, October
1998.

[20] V. Kathail, M. Schlansker, and B. R. Rau, “HPL-PD Architecture Specification:

Version 1.1,” Hewlett-Packard Laboratories Technical Report HPL-93-80 (R.1),
February 2000.

127

[21] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to Algorithms,”

MIT Press, 1990.

[22] C. Fu, M. D. Jennings, S. Y. Larin, and T. M. Conte, “Value Speculation
Scheduling for High Performance Processors,” Proceedings of the 8th International
Conference on Architectural Support for Programming Languages and Operating
Systems, October, 1998.

[23] C. Fu, M. D. Jennings, S. Y. Larin, and T. M. Conte, “Software-Only Value

Speculation Scheduling,” Technical Report, Department of Electrical and Computer
Engineering, North Carolina State University, June 1998.

[24] C. Fu and T. M. Conte, “Value Speculation Mechanisms for EPIC Architectures,”

Technical Report, Department of Electrical and Computer Engineering, North
Carolina State University, October 1998.

[25] T. Nakra, R. Gupta, and M. L. Soffa, “Value Prediction in VLIW Machine,”

Proceedings of the 26th International Symposium on Computer Architecture, May
1999.

[26] E. Larson and T. Austin, “Compiler Controlled Value Prediction Using Branch

Predictor Based Confidence,” Proceedings of the 33rd International Symposium on
Microarchitecture, December 2000.

[27] L. Gwennap, “Intel, HP Make EPIC Disclosure,” Microprocessor Report, 11(14):

1-9, October 1997.

[28] C. Dulong, “The IA-64 Architecture at Work,” Computer, vol. 31 no.7, July 1998.

[29] L. Gwennap, “MIPS R10000 uses decoupled architecture,” Microprocessor

Report, 8(14):18-22, October 1994.

[30] L. Gwennap, “Digital 21264 Sets New Standard,” Microprocessor Report,

10(14):11-16, October 1996.

[31] Intel Corporation, “Itanium Software Conventions and Runtime Architecture

Guide,” (Available from
http://developer.intel.com/design/ia64/downloads/245358.htm), September 2000.

[32] D. W. Wall, “Global Register Allocation at Link Time,” Proceedings of the ACM

SIGPLAN '86 Symposium on Compiler Construction, June 1986.

[33] T. M. Conte, S. Banerjia, S. Y. Larin, K. N. Menezes, and S. W. Sathaye,

“Instruction fetch mechanisms for VLIW architectures with compressed encodings,”
Proceedings of the 29th International Symposium on Microarchitecture, December
1996.

128

[34] K. N. Menezes, S. W. Sathaye, and T. M. Conte, “Path prediction for high issue-

rate processors,” Proceedings of the 1997 International Conference on Parallel
Architectures and Compilation Techniques, November 1997.

[35] J. Hoogerbrugge, “Dynamic Branch Prediction for a VLIW Processor,”

Proceedings of the 2000 International Conference on Parallel Architectures and
Compilation Techniques, October 2000.

[36] T. Ball and J. R. Larus, “Branch Prediction for Free,” Proceedings of the ACM

SIGPLAN ‘93 Conference on Programming Language Design and Implementation,
June 1993.

[37] K. N. P. Menezes, “Hardware-based Profiling for Program Optimization,” Ph.D.

Thesis, Department of Electrical and Computer Engineering, North Carolina State
University, 1997.

[38] S. W. Sathaye, “Evolutionary Compilation for Code Compatibility and

Performance,” Ph.D. Thesis, Department of Electrical and Computer Engineering,
North Carolina State University, 1998.

[39] P. P. Chang, S. A. Mahlke, and W. W. Hwu, “Using Profile Information to Assist

Classic Code Optimizations,” Software-Practice and Experience, vol. 21, December
1991.

[40] T. M. Conte, B. A. Patel, and J. S. Cox, “Using Branch Handling Hardware to

Support Profile-Driven Optimization,” Proceedings of the 27th International
Symposium on Microarchitecture, November 1994.

[41] Intel Corporation, “IA-64 Application Developer’s Architecture Guide,”

(Available from http://developer.intel.com/design/ia64/downloads/adag.htm), May
1999.

