
 

ABSTRACT 

FU, CHAO-YING 

Compiler-Driven Value Speculation Scheduling. 

(Under the direction of Prof. Thomas M. Conte.) 

 

Modern microprocessors utilize several techniques for extracting instruction-level 

parallelism (ILP) to improve the performance.  Current techniques employed in the 

microprocessor include register renaming to eliminate register anti- and output (false) 

dependences, branch prediction to overcome control dependences, and data 

disambiguation to resolve memory dependences.  Techniques for value prediction and 

value speculation have been proposed to break register flow (true) dependences among 

operations, so that dependent operations can be speculatively executed without waiting 

for producer operations to finish.  This thesis presents a new combined hardware and 

compiler synergy, value speculation scheduling (VSS), to exploit the predictability of 

operations to improve the performance of microprocessors.  The VSS scheme can be 

applied to dynamically-scheduled machines and statically-scheduled machines.  To 

improve the techniques for value speculation, a value speculation model is proposed as 

solving an optimal edge selection problem in a data dependence graph.  Based on three 

properties observed from the optimal edge selection problem, an efficient algorithm is 

designed and serves as a new compilation phase of benefit analysis to know which 

dependences should be broken to obtain maximal benefits from value speculation.  A 

pure software technique is also proposed, so that existing microprocessors can employ 

software-only value speculation scheduling (SVSS) without adding new value prediction 



 

hardware and modifying processor pipelines.  Hardware-based value profiling is 

investigated to collect highly predictable operations at run-time for reducing the overhead 

of program profiling and eliminating the need of profile training inputs. 
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Chapter 1    
 
Introduction 

1.1 Introduction 

Modern microprocessors utilize several techniques for extracting instruction-level 

parallelism (ILP) to improve the performance.  Current techniques include register 

renaming to eliminate register anti- and output (false) dependences, branch prediction to 

overcome control dependences, and data disambiguation to resolve memory dependences 

[1], [41].  Recent research focuses on using value prediction [2], [3], [4] to break register 

flow (true) dependences, so that dependent operations can be speculatively executed 

without waiting for producer operations to finish.  In this thesis, the technique for 

allowing speculative execution based on value prediction [6] is called value speculation 

[22]. 

The previous techniques for value speculation utilize hardware-only mechanisms 

[2], [3].  In these schemes, the instruction address (PC) of a register-writing instruction is 

sent to a value predictor to index a prediction table at the beginning of the fetch stage.  
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During the fetch and dispatch stages, the value predictor generates a prediction that is 

forwarded to a dependent instruction prior to its execution stage.  The value speculative 

dependent instruction must remain in a reservation station (even while its own execution 

continues), and be prevented from retiring.  At the state-update stage, the predicted value 

is compared with the actual result.  If the prediction is correct, the dependent instruction 

can then release the reservation station, update system states, and retire.  If the predicted 

value is incorrect, the dependent instruction needs to be re-executed with the correct 

operand.  Figure 1 illustrates the pipeline stages for value speculation utilizing a 

hardware-only scheme. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Pipeline stages of the hardware-only value speculation mechanism for 
flow dependent instructions.  The dependent instruction is speculatively executed at 

the same cycle as its producer instruction. 

 

The hardware-only value speculation schemes shown in Figure 1.1 are suitable for 

dynamically-scheduled machines, such as superscalars, but they cannot be applied to 
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statically-scheduled machines, including VLIW [20] and EPIC [27], [28] architectures.  

In a related approach to a different problem, the memory conflict buffer [1] was 

presented to dynamically disambiguate memory dependences.  This allows the compiler 

to speculatively schedule memory references above other, possibly dependent, memory 

instructions.  Recovery code, generated by the compiler, ensures correct program 

execution even when the memory dependences actually occur.  Aggressively scheduling 

memory references that are highly likely to be independent of each other improves 

performance.  Likewise, value-speculative scheduling attempts to improve performance 

by aggressively scheduling flow dependences that are highly likely to be eliminated 

through value prediction.  Recovery code can also be used when values are mispredicted. 

This thesis applies the memory conflict buffer scheme to value speculation and 

proposes a new combined hardware and compiler synergy, which is called value 

speculation scheduling (VSS).  Two new predicting and updating operations, LDPRED 

and UDPRED, are proposed to be the interface between the value predictor and program 

code.  Static VLIW instruction scheduling techniques are used to speculate value 

dependent operations aggressively.  Hardware value predictors can provide predicted 

values for allowing the execution of speculated operations to continue.  In the case of 

value misprediction, control flow is redirected to recovery code so that the execution can 

proceed with correct results.  The VSS techniques leverage advantages of both hardware 

schemes for value prediction and compiler schemes for exposing ILP.  VSS can be 

though of as a static ILP transformation that relies on dynamic value prediction hardware.  

Several advantages of the VSS scheme are as follows. 
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• Static scheduling provides a larger scheduling scope for exploiting ILP 

transformations, identifying long dependence chains suitable for value prediction, and 

then re-ordering code aggressively. 

• Value-speculative dependent operations can be executed as early as possible before 

the predicted operations that they depend on. 

• The compiler controls the number of predicted values and assigns different indices to 

them for accessing the value prediction table.  Only operations that the compiler 

deems are good candidates for predictions are then predicted, reducing conflicts for 

the hardware. 

• Recovery code is automatically generated, reducing the need for elaborate hardware 

recovery techniques. 

• Instead of relying on statically predicted values (e.g., from profile data), LDPRED 

and UDPRED operations access dynamic prediction hardware for enhanced 

prediction accuracy. 

• VSS can be applied to dynamically-scheduled (superscalar) processors, statically-

scheduled (VLIW) processors, or explicitly parallel instruction computing (EPIC) 

processors [27], [28]. 

• The non-intrusive design for the VSS scheme makes it easy to employ value 

prediction and value speculation in future microprocessors. 

 

To improve the techniques for value speculation, a value speculation model is 

proposed as solving an optimal edge selection problem in a data dependence graph.  

Based on three properties observed from the optimal edge selection problem, an 
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algorithm is designed to solve the optimal edge selection problem efficiently.  Running 

the optimal edge selection algorithm finds an optimal set of edges (dependences) and the 

corresponding maximal benefit from value speculation.  Examining the selected 

dependences provides insights into the instruction selection techniques that relate to the 

success of utilizing value speculation to improve the performance of microprocessors.  

Also, the optimal edge selection algorithm serves as a new compilation phase of benefit 

analysis to expose selected dependences to dynamically-scheduled and statically-

scheduled machines.  The compiler-directed edge selection can alleviate the burden for 

the hardware to decide which dependences should be broken at run-time. 

Software-only value speculation scheduling (SVSS) is proposed and can be 

applied to existing microprocessors for improving the performance.  The SVSS scheme 

utilizes software static stride value predictors to generate value predictions, so that 

dependent operations can be value-speculatively executed.  The experimental results 

show that the performance of the software static stride value predictor is comparable to 

that of the hardware stride two-delta value predictor [10], [13].  Significant speedups are 

shown for applying SVSS to the SPECint95 benchmarks. 

To reduce the overhead of program profiling and eliminate the need of profile 

training inputs, hardware-based value profiling is investigated to collect highly 

predictable operations at run-time.  The value predictor with additional tag and counter 

fields is proposed as the scheme of hardware-based value profiling.  At the retirement 

stage, operations access the value predictor and update the tag and counter fields.  Upon 

context-switches or interrupts, the tags with the maximum saturating counter values are 

stored to the memory for recording highly predictable operations.  From the experimental 
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results, the proposed scheme of hardware-based value profiling can accurately identify 

highly predictable operations at run-time.  The VSS optimization is experimented based 

on the feedback from hardware-based value profiling. 

1.2 Research Contributions 

The research contributions of this thesis are as follows. 

• This thesis proposes value speculation scheduling (VSS) to exploit the value 

predictability of operations to improve the performance of microprocessors.  The VSS 

technique leverages advantages of both hardware schemes for value prediction and 

compiler schemes for exposing ILP. 

• Two new predicting and updating operations, LDPRED and UDPRED, are proposed 

to be the interface between the value predictor and program code. 

• A value speculation scheduling algorithm is proposed to utilize LDPRED and 

UDPRED operations to break critical paths in a program to shorten execution time. 

• A value speculation model is built as solving an optimal edge selection problem in a 

data dependence graph to understand and improve the techniques for value 

speculation. 

• Three properties are observed from the optimal edge selection problem and help to 

design an efficient optimal edge selection algorithm. 

• Running the optimal edge selection algorithm serves as a new compilation phase of 

benefit analysis to know how many optimization opportunities for value speculation 

exist in a program and find an optimal set of edges (dependences) to be broken via 
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value prediction.  The selected dependences are then exposed to the hardware or the 

compiler to obtain maximal benefits from value speculation. 

• Software-only value speculation scheduling (SVSS) is proposed and can be applied to 

existing microprocessors for improving the performance. 

• Software static stride value predictors are designed to have comparable performance 

to hardware stride two-delta value predictors. 

• Hardware-based value profiling is proposed to accurately collect highly predictable 

operations at run-time with fewer overheads. 

1.3 Outline of the Thesis 

The organization of this thesis is as follows.  Chapter 2 presents the techniques for 

value speculation scheduling (VSS), including the microarchitectural support and the 

VSS algorithm.  Chapter 3 introduces the value speculation model by formally presenting 

an optimal edge selection problem, and proposes an optimal edge selection algorithm.  

Chapter 4 describes compiler-directed edge selection to expose selected dependences to 

the hardware or the compiler.  Chapter 5 proposes software-only value speculation 

scheduling (SVSS) that can be applied to existing microprocessors.  Chapter 6 studies the 

profile shift and investigates hardware-based value profiling.  Chapter 7 concludes this 

thesis and mentions future research directions. 
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Chapter 2    
 
Value Speculation Scheduling 

Research in value prediction shows a surprising amount of predictability for the 

values produced by register-writing operations [2], [3], [4], [6], [10], [13], [15], [16].  

Several hardware-based schemes have been proposed to exploit this predictability by 

eliminating flow dependences for highly predictable operations [2], [3], [6], [8], [9].  

Instead of using hardware-only mechanisms for value speculation (e.g., the scheme in 

Figure 1.1), this chapter introduces a combined hardware and compiler synergy that is 

called value speculation scheduling (VSS).  Static VLIW instruction scheduling 

techniques are used to speculate value dependent operations by scheduling them above 

the operations whose results they depend on.  Value prediction hardware is used to 

provide predicted values for allowing the execution of speculated operations to continue.  

In the case of mispredicted values, control flow is redirected to recovery code so that the 

execution can proceed with the correct results. 
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The remainder of this chapter is organized as follows.  Section 2.1 presents the 

microarchitectural support for value speculation scheduling (VSS).  Section 2.2 examines 

the value predictor design for VSS.  Section 2.3 introduces the VSS algorithm.  Section 

2.4 presents experimental results and discusses the heuristics used in the VSS scheme.  

Section 2.5 concludes this chapter. 

2.1 Microarchitectural Support for VSS 

Hardware pipeline stages for the VSS scheme are shown in Figure 2.1.  Two new 

predicting and updating operations, LDPRED and UDPRED, are introduced to be the 

interface with the value predictor during the execution stage.  An LDPRED operation 

loads a predicted value generated by the value predictor into a specified general-purpose 

register.  A UDPRED operation updates the value predictor with the actual result, 

resetting the device for future predictions after a misprediction.  In Figure 2.1 of the VSS 

scheme, the microprocessor only needs to add a new value predictor and slightly modify 

the pipeline for accessing the value predictor at the execution stage.  The non-intrusive 

design makes it easy to incorporate the VSS scheme into future microprocessors. 

  Figure 2.2 shows an example of using LDPRED and UDPRED operations to 

perform the VSS optimization.  In the original code sequence of Figure 2.2(a), operations 

1 to 6 form a long flow dependence chain, which must be executed sequentially.  If the 

flow dependence from operation 3 to operation 4 is broken, via VSS, the dependence 

height of the resulting dependence chain is shortened.  Furthermore, ILP is exposed by 

the resulting data dependence graph. 
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Figure 2.1 Pipeline stages of the VSS scheme.  Two new operations, LDPRED and 
UDPRED, are introduced to be the interface with the value predictor during the 

execution stage. 

 

 

(a) Original code 
 
1: ADD R1 Ä R2, 5 
2: SHL R3 Ä R1, 2 
3: LW R4 Ä 0(R3) 
4: ADD R5 Ä R4, 1 
5: OR R6 Ä R5, R7 
6: SW 0(R3) Ä R6 
Next: ...... 

(b) New code after value speculation of R4 (the result of 
operation 3) 
 
1: ADD   R1 Ä R2, 5 
2: SHL   R3 Ä R1, 2 
3: LW  R4 Ä 0(R3) 
// load prediction  from hardware into R8 
7: LDPRED R8 Ä index  
4’: ADD  R5 Ä R8, 1 
5’: OR   R6 Ä R5, R7 
6’: SW  0(R3) Ä R6 
// verify prediction 
8: BNE Recovery R8, R4   
Next: ...... 
 
Recovery: 
// update hardware predictor with R4 
9: UDPRED R4, index  
4: ADD  R5 Ä R4, 1 
5: OR  R6 Ä R5, R7 
6: SW  0(R3) Ä R6 
10: JMP Next 

Figure 2.2 An example of value speculation scheduling. 
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Figure 2.3 shows the data dependence graphs for the code sequence of Figure 2.2 

before and after breaking the flow dependence from operation 3 to operation 4.  Assume 

that the latencies of arithmetic, logical, branch, store, LDPRED, and UDPRED operations 

are 1 cycle, and that the latency of load operations is 2 cycles.  Then, the schedule length 

of the original code sequence of Figure 2.3(a), operations 1 to 6, is seven cycles.  By 

breaking the flow dependence from operation 3 to operation 4, VSS results in a schedule 

length of five cycles.  Figure 2.3(b) illustrates the schedule now possible due to reduced 

overall dependence height and ILP exposed in the new data dependence graph.  This 

improved schedule length, from seven cycles to five cycles, does not consider the penalty 

associated with value misprediction due to the required execution of recovery code.  The 

impact of recovery code on performance will be discussed in Section 2.3.  

In Figure 2.2(b), the value speculation scheduler breaks the flow dependence from 

operation 3 to operation 4.  Operations 4, 5 and 6 now form a separate dependence chain, 

allowing their execution to be speculated during scheduling.  They become operations 4’, 

5’, and 6’ respectively.  An operand of operation 4’ is modified from R4 to R8.  Register 

R8 contains the value prediction for destination register R4 of the predicted operation 3.  

Operation 7, LDPRED, loads the value prediction for operation 3 into register R8.  When 

the prediction is incorrect (R8≠R4), operation 9, UDPRED, updates the value predictor 

with the actual result of the predicted operation, from register R4.  Note that the resulting 

UDPRED operation is part of recovery code and its execution is only required when a 

value is mispredicted.  To ensure correct program execution, the compiler inserts the 

branch (BNE), operation 8, after the store, operation 6’, to branch to recovery code when 

the predicted value does not equal the actual value.  The recovery code contains a 
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UDPRED operation and the original dependent operations 4, 5, and 6.  After executing 

recovery code, the program jumps to the next operation after operation 8 and execution 

proceeds as normal.  Note that in Figure 2.2(b) operations 4’, 5’, and 6’ use speculative 

versions [41] of original operations 4, 5, and 6.  If the store, operation 6, does not have 

the speculative version, the compiler must not destroy data values belonging to other 

memory locations, i.e. the memory address of the store must be non-speculative.  As 

shown in Figure 2.2(b), for aggressive optimization, the compiler may allow the store, 

operation 6’, to save wrong data values to the memory location of 0(R3), which is non-

speculative. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Data dependence graphs for code in Figure 2.2.  The numbers along each 
edge represent the latency of each operation.  In (a), the schedule length is seven 

cycles.  In (b), because of exposed ILP and dependence height reduction, the 
schedule length is reduced to five cycles. 
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Each LDPRED and UDPRED pair that corresponds to the same value prediction 

uses the same table entry index into the value predictor.  Each index is assigned by the 

compiler to avoid unnecessary conflicts inside the value predictor.  While the number of 

table entries is limited, possible conflicts are deterministic and can be factored into 

choosing which values to predict in a compiler approach.  A value predictor design, 

featuring the new LDPRED and UDPRED operations, will be described in Section 2.2. 

By combining hardware and compiler techniques, the strengths of both dynamic 

and static techniques for exploiting ILP can be leveraged.  We see several possible 

advantages to VSS: 

• Static scheduling provides a larger scheduling scope for exploiting ILP 

transformations, identifying long dependence chains suitable for value prediction, and 

then re-ordering code aggressively. 

• Value-speculative dependent operations can be executed as early as possible before 

the predicted operations that they depend on. 

• The compiler controls the number of predicted values and assigns different indices to 

them for accessing the prediction table.  Only operations that the compiler deems are 

good candidates for predictions are then predicted, reducing conflicts for the 

hardware. 

• Recovery code is automatically generated, reducing the need for elaborate hardware 

recovery techniques. 

• Instead of relying on statically predicted values (e.g., from profile data), LDPRED 

and UDPRED operations access dynamic prediction hardware for enhanced 

prediction accuracy. 
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• VSS can be applied to dynamically-scheduled (superscalar) processors, statically-

scheduled (VLIW) processors, or explicitly parallel instruction computing (EPIC) 

processors [27], [28]. 

• The non-intrusive design for the VSS scheme makes it easy to employ value 

prediction and value speculation in future microprocessors. 

 

There is a drawback to the VSS scheme.  Because static scheduling techniques are 

employed, value-speculative operations are committed to be speculative and therefore 

always require predicted values.  Hardware-only schemes can dynamically decide when it 

is appropriate to speculatively execute operations.  The dynamic decision is based on the 

value predictor’s confidence in the predicted value, avoiding misprediction penalties for 

low confidence predictions. 

2.2 Value Predictor Design 

Microarchitectural support for value speculation scheduling (VSS) is in the form 

of special-purpose value predictor hardware.  Value prediction accuracy directly relates 

to performance improvements for VSS.  Various value predictors, such as last-value, 

stride, context-based, two-level, and hybrid predictors, provide different prediction 

accuracies [2], [3], [6], [10], [11], [13], [15], [16].  Value predictors with the most design 

complexity, in general, provide for the highest prediction accuracy.  In order to feature 

LDPRED and UDPRED operations for VSS, previously proposed value predictors must 

be re-designed slightly. 



 

15 

Figure 2.4 shows the block diagram of a value predictor that includes LDPRED 

and UDPRED operations.  In this value predictor, there are three fundamental units, the 

current state block, the old state block, and the prediction hardware block.  The current 

state block may contain register values, finite state machines, history information, or 

machine flags, depending on the prediction method employed.  The old state block 

hardware is a duplicate of the current state block hardware.  The prediction hardware 

block generates predictions with the input from the current state block.  Various 

prediction mechanisms can be used.  For example, generating the prediction as the last 

value (last value predictors [2], [3]).  Or, generating the prediction as the sum of the last 

value and the stride, which is the difference between the most recent last values (stride 

predictors [4], [6], [10], [13]).  Also, two-level value predictors [13] and context-based 

value predictors [10], [11] allow for the prediction of recently computed values.  For two-

level predictors, a value history pattern indexes a pattern history table, which in turn is 

used to index a value prediction from recently computed values.  Two-level value 

prediction hardware is based on two-level branch prediction hardware. 

Both the LDPRED and UDPRED operations contain an immediate operand that 

specifies the value predictor table index.  In general (independent of the prediction 

hardware chosen) the LDPRED operation performs three actions.  The compiler assigned 

number indexes each action.  First, the prediction hardware generates the predicted value 

by using the input from the current state block.  Second, current state information is 

shifted to the old state block.  Last, the current state block is updated based on the 

predicted value from the prediction hardware.  Information used by the prediction 
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hardware is updated simultaneously with the current state block update.  Note that for the 

LDPRED operation, the predicted value is used to update the current state speculatively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 The block diagram of value predictor design featuring LDPRED and 
UDPRED operations. 

 

The compiler assigned number also indexes the operation of the UDPRED 

operation.  When the value prediction is incorrect, the recovery code in Figure 2.2(b) 

must be executed.  The execution of UDPRED operations only occurs in recovery code, 

or only when values are mispredicted.  The UDPRED operation causes the update of both 

the current state block and the prediction hardware with the actual computed value and 

the old state block. 

If the compiler can ensure that each LDPRED and UDPRED pair is executed in 

turn (each prediction is verified and value predictions are not nested), the old state block 
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requires only one table entry.  The same table entry in the old state block is updated by 

every LDPRED operation, and used by every UDPRED operation, in the case of 

misprediction. 

In the VSS scheme, a prediction needs to be generated for each LDPRED 

operation.  There is no flag in the value predictor to indicate if a value prediction is valid 

or not.  The goal of the value predictor is to generate as many correct predictions as 

possible.  In Section 2.4, stride, two-level, and hybrid value predictors [13] are 

implemented to find the design, which provides the highest prediction accuracy for use in 

the VSS scheme.  Stride predictors predict arrays and loop induction variables well.  

Two-level predictors capture the recurrence of recently used values and generate 

predictions based on previous patterns of values.  However, neither of them alone can 

obtain high prediction accuracy for all programs, which exhibit different characteristics.  

Therefore, hybrid value predictors [13] consisting of both stride and two-level prediction 

are designed to cover both of these situations.  Figure 2.5 shows such a hybrid predictor 

that obtains high prediction accuracy.  The selection between the stride predictor and the 

two-level predictor is different from that in [13].  Every table entry has a saturating 

counter in the stride predictor and in the two-level predictor.  The saturating counter 

increases when its corresponding prediction is correct, and decreases when its prediction 

is incorrect.  Both saturating counters and predictors are updated for each prediction, 

regardless of which prediction is actually selected.  The hybrid predictor selects the 

predictor with the maximum saturating counter value.  In the event of a tie, the hybrid 

predictor favors the prediction from the two-level predictor.  Prediction accuracy results 

for the three value predictors will be presented in Section 2.4. 
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Figure 2.5 The hybrid predictor (with stride and two-level predictors).  Saturating 
counters are compared to select between the prediction techniques. 

 

2.3 A Value Speculation Scheduling Algorithm 

Performance improvement for value speculation scheduling (VSS) is affected by 

prediction accuracy, the number of saved cycles (from schedule length reduction), and 

the number of penalty cycles (from execution of recovery code).  Suppose that after 

breaking a flow dependence, value-speculative dependent operations are speculated, 

saving S cycles in overall schedule length when the prediction is correct.  Recovery code 

is also generated and requires P cycles.  Prediction accuracy for the speculated value is X.  

In this case, speedup may be positive if S > (1-X) * P holds.  For the example of Figure 

2.3(b), VSS saves 2 cycles (from 7 cycles to 5 cycles) and the resulting recovery code 

contains 5 operations, requiring 3 cycles in an ILP processor.  Therefore, for positive 

speedup, the prediction accuracy must be at least 33%.  If the actual prediction accuracy 
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is less, performance will be degraded by VSS.  In Section 3.1, the penalties for value 

misprediction in the VSS scheme will be discussed in more detail.  With these 

performance considerations in mind, an algorithm for VSS is proposed in Figure 2.6. 

The first step is to perform value profiling.  The scheduler must select highly 

predictable operations to improve performance through VSS.  Results from value 

profiling under different inputs and parameters have been shown to be strongly correlated 

[4], [7].  Therefore, value profiling can be used to select highly predictable operations on 

which to perform value speculation. 

Value profiling can be performed for all register-writing operations.  If profiling 

overhead is a concern, a filter may be used to perform value profiling only on select 

operations.  Select operations may be those that reside on critical paths (long dependence 

heights) or those that have long latencies (e.g., load operations).  In [7], estimating and 

convergent profiling are proposed to reduce profiling overhead for determining the 

invariance of operations.  Similar techniques could be applied for determining the value 

predictability of operations. 

Next, the value speculation scheduler performs region formation.  Treegion 

formation [17] is the region type chosen for our experiments.  A treegion is a non-linear 

region that includes multiple execution paths in the form of a tree of basic blocks.  The 

larger scheduling scope of treegions allows the scheduler to perform aggressive control 

speculation [41] and value speculation.  A data dependence graph is then constructed for 

each region. 

In step four, a prediction accuracy threshold is used to determine whether or not 

to perform value speculation on each operation.  For each operation, the scheduler 
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queries the value profiling information to get the estimate of its predictability.  If the 

predictability estimate is greater than the threshold, value prediction is performed.  For 

aggressive scheduling, more operations can be speculated by choosing a low threshold.  

Suggested values for the threshold are derived from experimental results in Section 2.4. 

 

1. Perform value profiling 

2. Perform region formation 

3. Build a data dependence graph for a region 

4. Select an operation with its prediction accuracy (based on value profiling) greater 

than a threshold  

5. Insert LDPRED after the predicted operation (the selected operation of step 4) 

6. Change the source operand of the dependent operation(s) to the destination register 

of LDPRED 

7. Insert a branch to recovery code 

8. Generate recovery code (which contains UDPRED) 

9. Repeat steps 4 – 8 until no more candidates found 

10. Update the data dependence graph for a region 

11. Perform instruction scheduling for a region 

12. Repeat steps 2 – 11 for each region 

Figure 2.6 A value speculation scheduling algorithm. 

 

When an operation is selected for value prediction, an LDPRED operation is 

inserted directly after it.  The LDPRED operation has an immediate value that is assigned 

by the scheduler to be its chosen index into the value predictor.  A new register is also 

assigned as the destination of the LDPRED operation.  Once the new destination register 

has been chosen for the LDPRED operation, any dependent operation(s) may update their 

source register(s) to reflect the new dependence on the LDPRED operation.  Only the 

first dependent operation in a chain of dependent operations needs to update its register 

source, the remaining dependencies in the chain are unaffected.  Even though more than 
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one chain of dependent operations may result from just one value prediction, only one 

LDPRED operation is needed for each value prediction. 

In step seven, a branch to recovery code is inserted for repairing value 

misprediction.  Only one branch per data value prediction is required and the scheduler 

determines where this branch is inserted.  Once the location of the branch is set, all 

operations in all dependence chains between the predicted operation and the branch to 

recovery code are candidates for value-speculative execution.  It is therefore desirable to 

schedule any of these operations above the predicted operation.  Actual hardware 

resources will restrict the ability to speculatively execute these candidates for value 

speculation.  Also, as all candidates for value speculation are duplicated in recovery code, 

their number directly affects the penalty for value misprediction.  These factors affect the 

scheduler’s decision on where to place the branch to recovery code.  Moreover, the 

compiler needs to make sure that all source operands (e.g., register values and memory 

data values) of candidate operations between the predicted operation and the branch are 

protected, so that inside recovery code value-speculative operations can be re-executed 

with original operands in the case of value misprediction. 

In step eight, recovery code is created for repairing value misprediction.  The 

recovery code contains the UDPRED operation, a copy of each candidate for value-

speculative execution, and an unconditional jump back to the operation following the 

branch to recovery code.  The UDPRED operation uses the same immediate value, 

assigned by the scheduler, as its corresponding LDPRED operation for indexing the value 

predictor.  The other source operand for the UDPRED operation is the destination register 
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of the predicted operation (the actual result of the predicted operation).  The UDPRED 

operation index and the actual result are used to update the value predictor. 

Finally, in steps ten and eleven, the data dependence graph is updated to reflect 

the changes and instruction scheduling for the region is performed.  Because of the 

machine resource restrictions and dependences, not all candidates for value speculation 

are speculated above the predicted operation.  Section 2.4 shows the results of using 

different threshold values for determining when to do value speculation.  

2.4 Experimental Results 

The SPECint95 benchmark suite was used in the experiments.  All programs were 

compiled with classic optimizations by the IMPACT compiler from the University of 

Illinois [18] and converted to the Rebel textual intermediate representation by the Elcor 

compiler from Hewlett-Packard Laboratories [19].  Then, the LEGO compiler, a research 

compiler developed at North Carolina State University, was used to insert profiling code, 

form treegions, and schedule operations [17].  After instrumentation for value profiling, 

intermediate code from the LEGO compiler was converted to C code.  Executing the 

resultant C code generated profiling data. 

For the experiments in value speculation scheduling, load operations were filtered 

as targets for value speculation.  Load operations were selected because they are usually 

on critical paths and have long latencies.  Value profiling for load operations was 

performed on all programs.  Table 2.1 shows the statistics from these profiling runs.  The 

number of total profiled load operations represents the total number of load operations in 

each benchmark, as all load operations are instrumented (profiled).  The number of static 
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load operations represents the number of load operations that are actually executed.  The 

difference between total profiled and static load operations is the number of load 

operations that are not visited.  The number of dynamic load operations is the total of 

each load operation executed multiplied by its execution frequency. 

 

Table 2.1 Statistics of total profiled, static and dynamic load operations. 

SPECint95 Total Profiled 

Load Operations 

Static Load 

Operations 

Dynamic Load 

Operations 

099.go 7,702 6,370 86,613,967 

124.m88ksim 2,954 747 15,765,232 

126.gcc 35,948 17,418 132,178,579 

129.compress 96 72 4,070,431 

130.li 1,202 414 24,325,835 

132.ijpeg 5,104 1,543 118,560,271 

134.perl 6,029 1,429 4,177,141 

147.vortex 16,587 10,395 527,037,054 

 

Stride, two-level, and hybrid value predictors were simulated during value 

profiling to evaluate prediction accuracy for each load operation.  During value profiling, 

after every execution of a load operation, the simulated prediction is compared with the 

actual value to determine prediction accuracy.  The value predictor simulators are 

updated with actual values, as they would be in hardware, to prepare for the prediction of 

the next use.  Since the goal of value profiling is to measure the potential prediction 

accuracy of operations rather than the required capacities of the hardware buffers, no 

index conflicts between operations are modeled. 

Each entry in the stride value predictor [4], [10], [13] has two fields, the stride 

and the current value.  The prediction is always the current value plus the stride.  The 
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stride equals the difference between the most recent current values.  The stride value 

predictor always generates a prediction.  No finite state machine hardware is required to 

determine if a prediction should be used. 

The two-level value predictor design is as in [13], with four data values and six 

outcome value history patterns in the value history table of the first level. The value 

history patterns index the pattern history table of the second level.  The pattern history 

table employs four saturating counters, used to select the most likely prediction amongst 

the four data values.  The saturating counters in the pattern history table increase by 

three, up to twelve, and decrease by one, down to zero.  Selecting the data value with the 

maximum saturating counter value always generates a prediction. 

The hybrid value predictor of stride and two-level value predictors utilizes the 

previous description illustrated earlier in Figure 2.5.  In the hybrid design, the saturating 

counters, used to select between stride and two-level prediction, also increase by three, up 

to twelve, and decrease by one, down to zero. 

Figure 2.7 shows the prediction accuracy of load operations under stride, two-

level, and hybrid predictors.  The prediction accuracy of the two-level predictor is higher 

than that of the stride predictor for all benchmarks except 129.compress and 132.ijpeg.  

However, the average prediction accuracy for the stride predictor is higher than that for 

the two-level predictor because of the large performance difference in 129.compress.  

Examining the value trace for 129.compress shows many long stride sequences that are 

not predicted correctly by the history-based two-level predictor.  The hybrid predictor, 

capable of leveraging the advantages of each prediction method, has the highest 

prediction accuracy of 63% on an average across all benchmarks. 
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Prediction Accuracy of Load Operations Using Stride, Two-level, and Hybrid Value 
Predictors
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Figure 2.7 Prediction accuracies of load operations using stride, two-level, and 
hybrid predictors. 

 

Figures 2.8 and 2.9 show the prediction accuracy distribution for load operations 

using the hybrid predictor.  Figure 2.8 is the distribution for static load operations and 

Figure 2.9 is the distribution for dynamic load operations.  For 124.m88ksim, 45% of the 

static load operations have prediction accuracies 90%, representing 90% of the dynamic 

load operations.  For 129.compress, 70% of the static load operations have prediction 

accuracies of 90%, accounting for 80% of dynamic load operations.  These static load 

operations are excellent candidates for VSS.  Such high prediction accuracy results in low 

overhead due to the execution of recovery code.  However, for benchmarks 099.go and 

132.ijpeg respectively, only 15% and 25% of dynamic load operations have prediction 

accuracies above 50%.  Therefore, they will not gain much performance from VSS. 
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The VSS algorithm shown in Figure 2.6 was performed on all SPECint95 

programs.  Prediction accuracy threshold values of 90%, 80%, 70%, 60% and 50% were 

evaluated.  The number of candidates for value-speculative execution was limited to three 

for each value prediction.  This parameter was varied in our evaluation, with the value of 

three providing good results. 

For the evaluation of the speedup, a very long instruction word (VLIW) 

architecture machine model based on the Hewlett-Packard Laboratories HPL-PD 

architecture [20] was chosen.  One cycle latencies are assumed for all operations 

(including LDPRED and UDPRED) except for load (two cycles), floating-point add (two 

cycles), floating-point subtract (two cycles), floating-point multiply (three cycles), and 

floating-point divide (three cycles).  The LEGO compiler statically schedules the 

SPECint95 programs.  The scheduler uses treegion formation [17] to increase the 

scheduling scope by including a tree-like structure of basic blocks in a single, non-linear 

region.  The compiler performs control speculation [41], which allows operations to be 

scheduled above branches.  Universal functional units that execute all operation types are 

assumed.  An eight universal unit (8-U) machine model was used.  All functional units 

are fully pipelined, with an integer latency of 1 cycle and a load latency of 2 cycles.  

Program execution time is measured by using the schedule length of each region and its 

execution profile weight.  The effects of instruction cache and data cache are ignored, and 

perfect branch prediction is assumed in an effort to determine the maximum potential 

benefits of VSS. 

 



 

27 

 
 

Figure 2.8 The prediction accuracy distribution for static load operations using the 
hybrid predictor. 

 

 
 
 
 
 
 

Figure 2.9 The prediction accuracy distribution for dynamic load operations using 
the hybrid predictor. 
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Figure 2.10 shows the execution time speedup of programs scheduled with VSS 

over without VSS.  Five different prediction accuracy thresholds were used to select 

which load operations are value speculated.  The maximum speedup for all benchmarks is 

17% for 147.vortex.  As illustrated in Figure 2.9, 147.vortex has many dynamic load 

operations that are highly predictable.  While 147.vortex does not have the highest 

predictability for load operations, the sheer number, as illustrated in Table 2.1, results in 

the best performance.  Benchmarks 124.m88ksim and 129.compress also show 

impressive speedups, 10% and 11.5% respectively, using a threshold of 50%.  Speedup 

for 124.m88ksim actually goes up, even as the prediction accuracy threshold goes down, 

from 90% to 50%.  This result can be deduced from the distribution of dynamic loads.  

For 124.m88ksim, there is a steady increase in the number of dynamic loads available as 

the threshold decreases from 90% to 50%.  There is a tapering off in speedup though, as 

more mispredictions are seen near a threshold of 50%.  For 129.compress, the step in the 

distribution of dynamic loads from 80% to 70% is reflected in a corresponding step in 

speedup.  Performance gains for 126.gcc are more reflective of the large number of 

dynamic load operations than of their predictability.  Penalties for misprediction at the 

lower thresholds reduce speedup for 126.gcc.  Benchmark 130.li, with a distribution of 

dynamic loads similar to 126.gcc, has lower performance due to fewer dynamic loads.  

Benchmark 134.perl clearly suffers from not having many dynamic loads.  Benchmarks 

099.go and 132.ijpeg do not have good predictability for load operations. 

Based on these performance results, a predictability threshold of 70% appears to 

be a good selection.  From the distribution of predictability for dynamic loads in Figure 

2.9, a threshold 70% includes a large majority of the predictable dynamic loads.  
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Choosing a threshold of predictability lower than 70% results in a tapering off in 

performance for some benchmarks.  This is due to both higher penalties for value 

misprediction and saturation of functional unit resources, resulting in fewer saved 

execution cycles. 

 

The Execution Time Speedup on 8U Machine Model
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Figure 2.10 The execution time speedup for programs scheduled with VSS over 
without VSS.  Prediction accuracy threshold values of 90%, 80%, 70%, 60% and 

50% are used. 

 

2.5 Summary 

This chapter presents value speculation scheduling (VSS), a new technique for 

exploiting the value predictability of register-writing operations.  This technique 

leverages advantages of both hardware schemes for value prediction and compiler 
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schemes for exposing ILP.  Dynamic value prediction is used to enable aggressive static 

schedules in which value dependent operations are speculated.  In this way, VSS can be 

thought of as static ILP transformation that relies on dynamic value prediction hardware.  

The results for VSS presented in this chapter are impressive, especially when considering 

that only load operations are considered for value speculation.  Chapter 3 will introduce a 

value speculation model to understand and improve the techniques for value speculation.  

By using the value speculation model, all true dependences among operations are 

considered for value prediction to obtain maximal benefits from value speculation. 
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Chapter 3    
 
Modeling Value Speculation 

Techniques for value speculation have been proposed for dynamically-scheduled 

machines [2], [3], [6], [8], [9], [22], [23], [26] and statically-scheduled machines [22], 

[23], [24], [25] to increase instruction-level parallelism by breaking flow (true) 

dependences and allowing value-dependent operations to be executed speculatively.  

Researchers have published many papers on designing value predictors yielding very 

high prediction accuracies [10], [11], [13], [15], [16].  Recently, the focus has shifted to 

the instruction selection techniques that choose important producer and consumer 

instructions for value prediction [8], [9], [24], [26].  The reason is that the effectiveness 

of value speculation relies not only on the predictability of operations, but also on the 

ability to shorten overall execution time, while encountering penalties for value 

misprediction.  Several heuristics have been proposed to select operations for value 

prediction [8], [9], [24], [26], such as predicting operations at the top or in the middle of 
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critical paths.  However, it is unknown whether these heuristics do a good job of 

obtaining maximal benefits from value speculation. 

To understand and improve the techniques for value speculation, we model value 

speculation as an optimal edge selection problem.  Edges represent dependences between 

operations in a data dependence graph.  The optimal edge selection problem involves 

finding an optimal (minimal) set of edges to break that achieves maximal benefits from 

value speculation, while taking the penalties for value misprediction into account.  Based 

on three properties observed from the optimal edge selection problem, an efficient 

algorithm is designed using the techniques of branch-and-bound and memoization (a 

variation of dynamic programming) [21].  After running the optimal edge selection 

algorithm, several experimental results of modeling value speculation are presented in 

this chapter, including: 

• The maximal benefits from value speculation on the 20 most heavily executed paths 

in the SPECint95 benchmarks. 

• The impact of different penalties for branch misprediction on the benefits. 

• The value prediction accuracy distribution and the location distribution of an optimal 

set of edges (dependences). 

• The location distribution of the selected producer and consumer operations. 

• The top five opcodes of the selected producer and consumer operations. 

The remainder of this chapter is organized as follows.  Section 3.1 briefly 

introduces different techniques for value speculation.  Section 3.2 presents an optimal 

edge selection problem formally.  Section 3.3 describes three properties observed from 

the optimal edge selection problem.  Section 3.4 presents an optimal edge selection 
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algorithm, with experimental results shown in Section 3.5.  Section 3.6 concludes this 

chapter. 

3.1 Introduction of Value Speculation 

The techniques for value speculation in dynamically-scheduled and statically-

scheduled machines are introduced as follows.  In dynamically-scheduled machines [2], 

[3], there is an instruction window that maintains a pool of instructions waiting to be 

executed.  All instructions in the instruction window dynamically form a data dependence 

graph.  Without the value prediction technique, the dynamic scheduler selects an 

instruction to execute only if all of its operands are ready.  However, by using value 

prediction to break flow dependences, the original data dependence graph can be 

collapsed and instructions can be speculatively executed even if their operands are not 

ready.  Speculatively executed instructions must wait for verifying predicted values 

before their retirement.  In the case of value misprediction, recovery mechanisms are 

required to re-execute instructions with correct operands.  One recovery scheme utilizes 

the branch misprediction handling hardware [8] that is already in the dynamically-

scheduled machine.  All instructions following the incorrectly predicted instruction are 

re-fetched and re-executed.  Another recovery mechanism is the selective re-issuing 

scheme [2], [3] to re-execute dependent instructions that are affected by incorrect 

predictions.  The implementation of the selective re-issuing scheme is more complicated 

than that of the branch misprediction handling hardware. 

For statically-scheduled machines, the compiler is responsible for forming a 

region of code and building the data dependence graph for all operations inside the 
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region.  The scheduler must honor all dependences among operations to generate a 

correct schedule.  With the help of value prediction and value speculation, the scheduler 

can break true dependences and speculatively schedule value-dependent operations.  The 

compiler inserts predicting operations, LDPRED [22], to load a prediction from the value 

predictor, and verifying operations, BNE (branch if not equal) [22], to compare the 

predicted value with the actual result.  In the case of value misprediction, the compiler 

can provide recovery code [22] for re-executing operations, or advanced hardware can 

generate recovery code on the fly and execute recovery code on a separate compensation 

engine [25]. 

The challenge for value speculation is the combination of breaking true 

dependences among all dependences in the data dependence graph to reduce overall 

execution time, while also considering penalties resulting from value misprediction and 

the side effect of value-speculative execution.  The penalties may include cycles for 

verifying value prediction, re-executing operations, I-Cache stalls due to re-fetching 

operations and aggressive speculative execution, D-Cache stalls due to more executed 

memory operations, and structural hazards [3] that come from the competition for 

machine resources (e.g., functional units, entries in the branch predictor) by non-

speculative and speculative operations.  Different recovery techniques for dynamically-

scheduled and statically-scheduled machines have different penalties for value 

misprediction and value-speculative execution.  The penalties under different recovery 

techniques for value speculation are compared in Table 3.1. 
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Table 3.1 Penalties under different recovery techniques for value speculation. 

Dynamically-Scheduled Machines Statically-Scheduled Machines Recovery 

Techniques Branch 

Misprediction 

Handling 

Hardware [8] 

Selective Re-

issuing [2], [3] 

Compiler-

Generated 

Recovery Code 

[22] 

Hardware-

Generated 

Recovery 

Code [25] 

Penalties for 

Verifying Value 

Prediction 

1 cycle (for 

comparing actual 

and predicted 

values) always  

+  

Flushing all 

pipeline stages 

when value is 

mispredicted 

1 cycle (for 

comparing actual 

and predicted 

values) always 

1 cycle (for 

comparing actual 

and predicted 

values) always 

+  

Flushing all 

pipeline stages 

when the BNE 

operation is 

mispredicted 

1 cycle (for 

comparing 

actual and 

predicted 

values) always 

Penalties for 

Re-execution 

Re-executing all 

operations when 

value is 

mispredicted 

Re-executing 

only affected 

operations when 

value is 

mispredicted 

Re-executing 

only affected 

operations when 

value is 

mispredicted 

Re-executing 

only affected 

operations 

when value is 

mispredicted 

(on a separate 

engine) 

I-Cache Stalls Re-fetching all 

operations when 

value is 

mispredicted  

+ 

Side effect of 

speculative 

execution 

Side effect of 

speculative 

execution 

Fetching 

recovery code 

when value is 

mispredicted  

+  

Side effect of 

speculative 

execution 

Side effect of 

speculative 

execution 

D-Cache 

Stalls,  

Structure 

Hazards 

Side effect of 

speculative 

execution 

Side effect of 

speculative 

execution 

Side effect of 

speculative 

execution 

Side effect of 

speculative 

execution 
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As shown in Table 3.1, the scheme of compiler-generated recovery code for 

statically-scheduled machines has the penalties of one cycle for verifying the predicted 

value, the flushing cycles after the verifying operation (BNE) is mispredicted, the cycles 

for executing recovery code, additional I-Cache stalls for fetching recovery code, and 

extra stalls due to the impact of speculative execution on the I-Cache, D-Cache, and 

machine resources.  In Table 3.1, some items of penalties are the same under different 

recovery mechanisms, but others are different. 

3.2 An Optimal Edge Selection Problem 

3.2.1 Terminology of Data Dependence Graphs 

In related work [14], a dynamic data dependence graph is utilized to study the 

available parallelism with data value prediction.  For modeling value speculation, the data 

dependence graph is heavily used as well.  Terminology required on the data dependence 

graph is introduced as follows. 

The data dependence graph that is formed in the instruction window or generated 

by an acyclic code scheduler is a directed acyclic graph (DAG).  The data dependence 

graph is denoted by DDG=(N, E), where N is the set of Nodes representing operations 

and E is the set of Edges representing dependences between operations.  For an edge Ei, 

Source(Ei) is the source node of the edge Ei and Sink(Ei) is the sink node of the edge Ei.  

The types of edges include register flow (true) dependences, register anti- (false) 

dependences, register output (false) dependences, memory dependences, and control 

dependences [19].  Edges that are flow dependence types are candidates for the value 

speculation techniques to break.  Each edge has a latency based on the dependence type.  
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Register flow and output dependences have latencies equal to the latencies of source 

operations.  Register anti-, memory, and control dependences have latencies of zeros. 

Each node has a Height, which is the latest scheduled cycle without delaying 

other operations.  A top-down depth-first-search (DFS) algorithm [21] shown in Figure 

3.1 can compute heights of all nodes in a data dependence graph.  The running time of 

computing heights is O(|N| + |E|), where |N| is the number of nodes and |E| is the number 

of edges.  The node also has a Depth, which is the earliest scheduled cycle of the 

operation.  Depths are calculated by a bottom-up DFS algorithm, very similar to the 

algorithm shown in Figure 3.1.  Only heights are used in this chapter.  The maximal 

height of all nodes in the DDG represents the minimal cycles to execute or schedule all 

operations in the DDG.  It is denoted by |DDG|, and called the Length or the Height of 

the DDG. 

A Critical Path is the longest path from the starting nodes (of height 0) without 

predecessors to the ending nodes without successors in a data dependence graph.  Based 

on the heights of nodes in the DDG, the critical path can be found using the algorithm 

shown in Figure 3.2.  The algorithm of finding the critical path is similar to DFS, so its 

running time is O(|N| + |E|).  The length of the critical path equals the length of the DDG 

(=|DDG|).  Figure 3.3 shows examples of data dependence graphs with nodes that are laid 

out by heights and with edges that can be any dependence type.  The critical path in the 

data dependence graph shown in Figure 3.3 consists of thick edges and thick-circled 

nodes. 
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// Compute heights of all nodes in a DDG 
 
Compute_Height(DDG) 
{ 
  // Step 1. Reset height of nodes and length of DDG. 
  DDG->length = -1; 
  For each node in DDG  { 
    node->height = -1; 
  } 
 
  // Step 2. Compute height 
  for each node in DDG  { 
    height = Compute_Height(node); 
    if(height > DDG->length)  { 
      DDG->length = height;   
    } 
  } 
 
  // Step 3. Reverse heights of all nodes, so heights are the  
  //         latest scheduled cycle. 
  for each node in DDG  { 
    node->height = DDG->length – node->height; 
  } 
} 
 
// Compute height of this node 
int Compute_Height( node) 
{ 
  // Step 1. If node has height, return its height. 
  If ( node->height != -1)   { 
    return node->height;   
  } 
 
  // Step 2.  Get the max height from its successors.  
  max_height = 0; 
  for each succ_edge of node  { 
    sink_node = succ_edge->sink; 
    succ_height = Compute_Height( sink_node); 
    new_height = succ_height + succ_edge->latency; 
    if(new_height > max_height)   { 
      max_height = new_height;  
    )  
  } 
 
  if node has no succ_edge 
    node->height = node->op->latency; 
  else 
    node->height = max_height; 
 
  return node->height; 
}  

Figure 3.1 An algorithm of computing heights of all nodes in a data dependence 
graph. 



 

39 

 
 
// Find all critical paths in a DDG 
 
Find_Critical_Path(DDG) 
{ 
  // Step 1. Compute heights of nodes in the DDG. 
  Compute_Height(DDG); 
 
  // Step 2. Reset critical attributes of nodes and edges. 
  for each node in DDG  { 
    node->critical = false; 
 
    for each succ_edge of node  { 
      succ_edge->critical = false;   
    } 
  } 
 
  // Step 3. Find critical paths from nodes with height 0. 
  for each node in DDG  { 
    if (node->height == 0)  { 
      node->critical = true; 
      Find_Critical_Path(node); 
    } 
  } 
} 
 
// Find critical path starting from node 
 
Find_Critical_Path(node) 
{ 
  for each succ_edge of node  { 
    sink_node = succ_edge->sink; 
 
    if (sink_node->height == (node->height + succ_edge->latency))  { 
      succ_edge->critical = true; 
 
      if(sink_node->critical == false)  { 
        sink_node->critical = true; 
        Find_Critical_Path(sink_node); 
      } 
    } 
  } 
} 

Figure 3.2 An algorithm of finding critical paths in a data dependence graph. 
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Figure 3.3 (a) A data dependence graph.  (b) A modified data dependence graph 
after performing the value speculation transformation on E2 (from node 8 to node 

10).  Thick edges and thick-circled nodes are on the critical path. 

 

3.2.2 The Problem Statement 

The model of value speculation is best illustrated by an example.  For the data 

dependence graph shown in Figure 3.3(a), one edge E2, from node 8 to node 10, is 

selected by the value speculation technique.  In Figure 3.3(b), the value speculation 

transformation is performed, including breaking the edge E2 (from node 8 to node 10), 

adding one predicting node 21 (LDPRED), adding one verifying node 22 (BNE), adding 

one edge E8 (from node 21 to node 10), adding one edge E9 (from node 21 to node 22), 

and adding one edge E10 (from node 8 to node 22).  The predicting node loads a 

prediction from a value predictor, and feeds its result to node 10.  The verifying node 

compares the predicted value from the predicting node and the actual result of node 8.  
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Note that the predicting and verifying nodes are explicit in statically-scheduled machines, 

but are implicit in dynamically-scheduled machines. 

In Figure 3.3(a), the length of the DDG is 5 cycles.  In Figure 3.3(b), after 

performing the value speculation transformation, the length of the modified DDG is 

reduced to 4 cycles.  The modified DDG, denoted by DDGn, is obtained after performing 

the value speculation transformation on n edges in the original DDG.  The original DDG 

without performing the value speculation transformation on any edge is DDG0. 

In the case of value misprediction, penalties are incurred for recovery.  The total 

penalty for mispredicting node Ni is denoted by Penalty(Ni).  It is assumed to be greater 

than zero.  Based on Penalty(Ni), the penalty for mispredicting edge Ei, Penalty(Ei), is 

defined as follows: 

 

Penalty(Ei) = 




 already. predicted been has   Eof node source  theif 0,

 yet.predicted beennot  has   Eof node source  theif )),urce(EPenalty(So

i

ii
 

 

Because Penalty(Ni) is counted at most once in the proposed model, if the source 

node of Ei has not been predicted yet, Penalty(Ei) equals Penalty(Source(Ei)) after 

performing the value speculation transformation on the edge Ei.  Otherwise, Penalty(Ei) is 

zero.  Note that in the latter case of Penalty(Ei) equal to zero, the predicting node, the 

verifying node, and some new edges have been created already, so the value speculation 

transformation includes only breaking the selected edge and adding one edge from the 

predicting node to the sink node of the selected edge. 
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For an acyclic data dependence graph DDG=(N, E), find a minimal set of edges as {E1, 

E2, …, En-1, En}, such that the benefit is maximal (and must be greater than zero) by 

performing the value speculation transformation on selected edges.  The benefit for the 

DDG is defined as follows. 

Benefit(DDG) = Benefit(DDG0) 

  = Execution_cycles_of_DDG0 - Execution_cycles_of_DDGn 

  = |DDG0| - (|DDGn| + ∑
=

n

i 1

Penalty(Ei)) 

  = (|DDG0| - |DDGn|) - ∑
=

n

i 1

Penalty(Ei) 

  = Cycle_savings – Misprediction_penalties 

where 

Penalty(Ni) > 0 for all nodes, 

Penalty(Ei) = 




 already. predicted been has   Eiof node source  theif 0,

 yet.predicted beennot  has   Eiof node source  theif urce(Ei)),Penalty(So
 

Figure 3.4 An optimal edge selection problem. 

 

Penalty(Ni)  =  Value_misprediction_rate * Cycles_of_recovery_code + 

 BNE_branch_misprediction_rate * Stall_cycles_of_mispredicted_branch 

where 

Cycles_of_recovery_code = |DDG0| – Height (Ni), 

Stall_cycles_of_mispredicted_branch = 2, 5, or 10, 

Value misprediction rates and BNE branch misprediction rates come from profile results. 

Figure 3.5 Penalties of nodes. 
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Using the introduced terminology, value speculation is modeled as an optimal 

edge selection problem that is formally presented in Figure 3.4.  The optimal edge 

selection problem asks for finding a minimal set of edges such that the benefit is maximal 

(and must be greater than 0) by performing the value speculation transformation on 

selected edges. 

Some assumptions and limitations of the proposed value speculation model are as 

follows: 

• The data dependence graph must be a directed acyclic graph (DAG).  The DDG is 

constructed for operations in the instruction window of dynamically-scheduled 

machines, or for operations in a linear path (trace) of basic blocks in a program for 

statically-scheduled machines. 

• The selected edge must belong to the original set of edges, and must be a flow (true) 

dependence type. 

• In the optimal edge selection problem, the latencies of edges and the penalties for 

mispredicting nodes must be known beforehand and fixed all the time.  In this 

chapter, the value speculation technique on a statically-scheduled machine with 

compiler-generated recovery code is experimented.  According to Table 3.1, the 

penalties for mispredicting nodes are modeled by the equation in Figure 3.5.  (The 

penalties in other recovery schemes shown in Table 3.1 can be modeled as well.)  

Note that the one-cycle penalty for comparing the predicted value with the actual 

result does not appear in the equation, because the verifying node has already been 

inserted in the data dependence graph.  The penalties of the I-Cache stalls, D-Cache 
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stalls, and structural hazards are ignored.  In the equation, the value misprediction 

rates and the BNE branch misprediction rates come from profile results. 

• Machine resources are not taken into account in the optimal edge selection problem.  

Unlimited resources are assumed to be available for the value speculation techniques. 

• In dynamically-scheduled machines, instructions shift into and out of the instruction 

window every cycle.  However, the proposed value speculation model focuses only 

on a static data dependence graph that is composed of the instructions in the current 

instruction window. 

3.3 Three Properties Observed from the Optimal Edge 
Selection Problem 

  The optimal edge selection problem presented in Figure 3.4 can be solved by a 

brute-force method that measures the benefits of all possible edge selections.  For |E| 

edges, the brute force method must try 2|E| combinations.  However, from observing the 

optimal edge selection problem, there exist some properties for us to design an efficient 

algorithm. 

The first observation is that because the process of the value speculation 

transformation is deterministic, the final DDGn should be the same regardless of the order 

of the value speculation transformation performed on the selected edges in the DDG0.  

Therefore, the computation of the benefit on all selected edges can be decomposed into 

calculating the benefit difference of each selected edge.  Property 1 is shown in Figure 

3.6, and its proof appears as follows. 
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Property 1: Decomposition 

Let Benefit_Difference(Ei) = |DDGi-1| - |DDGi| - Penalty(Ei).  Then, for a set of edges 

{E1, E2, …, En-1, En}, the benefit for the DDG0 is the summation of all benefit 

differences. 

Figure 3.6 Property 1 of the optimal edge selection problem: decomposition. 

 

Proof of Property 1: 

For the presentation, the index of the edges {E1, E2, …, En-1, En} is coincidently the same 

as the order when they are selected.  The benefit for the DDG0 after performing the value 

speculation transformation on {E1, E2, …, En-1, En} is denoted by 

Benefit(DDG0)  

= (|DDG0| - |DDGn|) - ∑
=

n

i 1

Penalty(Ei) 

= (|DDG0| - |DDG1|) + (|DDG1| - |DDG2|)  + …  + (|DDGn-1| - |DDGn|)  - ∑
=

n

i 1

Penalty(Ei) 

= (|DDG0| - |DDG1| - Penalty(E1)) + (|DDG1| - |DDG2| - Penalty(E2))  + …  + (|DDGn-1| - 

|DDGn| - Penalty(En)) 

= ∑
=

n

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei))  

= ∑
=

n

i 1

Benefit_Difference(Ei). # 

 

The second observation is the optimal substructure [21] of the optimal edge 

selection problem.  For the data dependence graph shown in Figure 3.3(a), if the set of 

{E2, E5} is an optimal solution for the DDG0, after performing the value speculation 
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transformation on {E2}, {E5} will be an optimal solution for the DDG1 shown in Figure 

3.3(b).  (Note that for the modified DDG, we restrict that the candidate edge must still 

belong to the original set of edges in the DDG0, and must be a true dependence type.)  

Property 2 is shown in Figure 3.7, and its proof appears as follows. 

 

Property 2: Optimal Substructure  

For an optimal set of edges {E1, E2, …, En-1, En} for the DDG0, after performing the 

value speculation transformation on a subset of optimal edges, the remaining edges in 

the optimal set of edges is an optimal solution for the modified DDG.  So, the problem 

of each modified DDG is also an optimal edge selection problem. 

Figure 3.7 Property 2 of the optimal edge selection problem: optimal substructure. 

 

Proof of Property 2: (By Contradiction) 

Because {E1, E2, …, En-1, En } is an optimal solution for the DDG0, {E1, E2, …, En-1, En } 

should be the minimal set of edges that yield the highest positive benefit for the DDG0.  

Without loss of generality, {E1, E2, …, En-1, En} is split into two sets of edges, {E1, E2, 

…, Ek} and {Ek+1, …, En-1, En}.  For the presentation, the index of the edges {E1, E2, …, 

En} is coincidently the same as the order when they are selected.  From Property 1, the 

maximal benefit for the DDG0 is denoted by Benefitold(DDG0) 

= ∑
=

n

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) 

= ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) + ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei)). 
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Let Benefitold(DDGk) = ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei)).  Then, 

Benefitold(DDG0) = ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) + Benefitold(DDGk). 

Property 2 states that {Ek+1, …, En-1, En} must be an optimal solution for the DDGk.  We 

will prove it by the following four cases. 

Case 1. If we assume that {Ek+1, …, En-1, En} does not yield the highest benefit for the 

DDGk, one new Benefitnew(DDGk) can be found to be higher than the Benefitold(DDGk).  

Adding ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) and the Benefitnew(DDGk) together, one 

new Benefitnew(DDG0) can be found to be higher than the Benefitold(DDG0).  This 

contradicts that the Benefitold(DDG0) should be maximal.  Therefore, we cannot find 

other set of edges for the DDGk to have higher benefits than ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - 

Penalty(Ei)). 

Case 2. If we assume that {Ek+1, …, En-1, En} for the DDGk is not the minimal set of 

edges that yield the maximal benefit (= Benefitold(DDGk)), a smaller set of edges {Ek’+1, 

…, En’-1, En’} can be found to have the same benefit (=Benefitold(DDGk)).  Combining 

{E1, E2, …, Ek} and {Ek’+1, …, En’-1, En’} forms a smaller set of edges for the DDG0 that 

yield the benefit equal to the Benefitold(DDG0).  This contradicts that {E1, E2, …, En-1, 

En} should be the minimal set of edges for the DDG0.  Therefore, {Ek+1, …, En-1, En} is 

the minimal set of edges that yield the maximal benefit (= Benefitold(DDGk)) for the 

DDGk. 
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Case 3. If we assume that ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) is zero, performing value 

speculation transformation on {E1, E2, …, Ek} for the DDG0 will obtain the benefits 

= ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei))  

= ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) + 0 

= ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) + ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei))  

= ∑
=

n

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) 

= Benefitold(DDG0). 

{E1, E2, …, Ek} and {E1, E2, …, En-1, En} yield the same benefits.  However, {E1, E2, …, 

En-1, En} contains more edges than {E1, E2, …, Ek}.  This contradicts that {E1, E2, …, En-

1, En} should be the minimal set of edges for the DDG0.  Therefore, ∑
+=

n

ki 1

(|DDGi-1| - 

|DDGi| - Penalty(Ei)) is not zero. 

Case 4. If we assume that ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) is negative, performing 

value speculation transformation on {E1, E2, …, Ek} for the DDG0 will obtain the benefits 

= ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei))  

> ∑
=

k

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) + ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei))  

= ∑
=

n

i 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) = Benefitold(DDG0). 
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{E1, E2, …, Ek} yields a higher benefit for the DDG0 than {E1, E2, …, En-1, En} does.  

This contradicts that {E1, E2, …, En-1, En} should yield the highest benefit for the DDG0.  

Therefore, ∑
+=

n

ki 1

(|DDGi-1| - |DDGi| - Penalty(Ei)) is not negative. 

Summary: From the abovementioned four cases, we know that for the DDGk, {Ek+1, …, 

En-1, En} is the minimal set of edges (from Case 2) that yield the highest (from Case 1) 

and positive (from Case 3 and Case 4) benefit.  Therefore, {Ek+1, …, En-1, En} is an 

optimal solution for the DDGk.  Also, any subset of optimal edges for the DDG0 is an 

optimal solution for the corresponding modified DDG.  So, the problem of each modified 

DDG is also an optimal edge selection problem. # 

 

 The third observation is that if an optimal solution (an optimal set of edges) exists 

for the DDG0, there must be at least one edge from the optimal set of edges on the critical 

path of the DDG0; otherwise the length of the critical path in the DDG0 will never be 

shortened, and the overall benefit will never be greater than 0.  From Property 2, the 

problem of each modified DDG is also an optimal edge selection problem.  So, based on 

the same reason, there must be at least one optimal edge on the critical path in each 

modified DDG.  Property 3 is stated as follows and its proof stands from our discussion. 

 

Property 3: Critical Edge Selection  

For an optimal set of edges for the DDG0, there exists a sequence of edges, such that 

each selected edge is on the critical path of each modified DDG. 

Figure 3.8 Property 3 of the optimal edge selection problem: critical edge selection. 
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3.4 An Optimal Edge Selection Algorithm 

3.4.1 The Algorithm 

Based on the three properties introduced in Section 3.3, an optimal edge selection 

algorithm shown in Figure 3.9 is designed using the techniques of branch-and-bound and 

memoization (a variation of dynamic programming) [21].  The algorithm employs top-

down recursion to try different sets of edges.  A selection table shown in Figure 3.10 

records each edge selection and its corresponding benefit.  In Figure 3.10, the first 

selection entry contains an edge {E2} and its benefit is 0.995 cycles obtained by 

performing the value speculation transformation on E2 in the data dependence graph 

shown in Figure 3.3(a).  The optimal edge selection algorithm needs to search the table to 

know if the same edge selection has been tried already.  Thus, the selection table is 

managed as a hashed table to reduce the table lookup time.  Hashing every id of selected 

edges generates the table index.  To reduce the memory space for storing the selection 

entries, bit vectors can be used to record edges. 

In Figure 3.9, the Optimal_Edge_Selection_Algorithm initializes the current 

maximal benefit, current_max_benefit, to 0.0 and sets the best selection entry, best_se, to 

NULL.  The current_max_benefit indicates the maximal benefit that can be obtained for 

the data dependence graph, ddg.  The best_se maintains a linked list of edge selections 

that yield the maximal benefits.  After finding the critical paths in the ddg, the algorithm 

calls the Selection_Algorithm with parameters of the ddg and the Selection_Entry *se that 

points to the previous selection entry.  The Selection_Algorithm contains a one-level loop 

to iterate each candidate edge in the current ddg. 
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double current_max_benefit; 
Selection_Entry *best_se; 
 
Optimal_Edge_Selection_Algorithm(Data_Dependence_Graph *ddg) 

{ 
   current_max_benefit = 0.0; 
   best_se = NULL; 
   Find_Critical_Path(ddg); 
   Selection_Algorithm(ddg,NULL); 
} 
Selection_Algorithm(Data_Dependence_Graph *ddg, Selection_Entry *se) 
{ 
   For each candidate edge in ddg 
   { 
      // Step 1. Filter candidate edges 
      If edge is not on critical path of ddg, continue. 
      If edge->sink_node->height is less than 2 or greater than  
  (ddg->length)-2, continue. 
 
      // Step 2. Generate a new edge selection 
      new_edges = edge ∪ se->edges; 
      If the selection table has an entry of new_edges already,  
  continue. 
      Get a new Selection_Entry *new_se from the selection table. 
      new_se->edges = new_edges; 
 
      // Step 3. Calculate benefit difference 
      old_length = ddg->length; 
      old_benefit = se->benefit;  
      Perform value speculation transformation on edge in ddg. 
      Find_Critical_Path(ddg); 
      new_length = ddg->length; 
      benefit_difference = (old_length - new_length) - penalty(edge); 
      new_se->benefit = old_benefit + benefit_difference; 
      Update current_max_benefit and best_se. 
 
      // Step 4. Recursive call 
      possible_max_benefit = new_se->benefit + possible_benefit(ddg); 
      If (possible_max_benefit >= current_max_benefit) { 
         Selection_Algorithm(ddg,new_se); 
      } 

�

       // Step 5. Undo changes of ddg made in this level 
      Undo changes of ddg made in this level. 
  } 
} 

Figure 3.9 An optimal edge selection algorithm. 

 

 



 

52 

 

 

 

 

 

 

 

Figure 3.10 A selection table.  Each selection entry records a set of edges and its 
corresponding benefit. 

 

In Step 1, the algorithm filters out candidate edges based on two criteria.  First, 

from Property 3 of critical edge selection, the algorithm can try only the candidate edge 

on the critical path to find an optimal solution.  Second, if the height of the sink node of 

the edge is less than 2 or greater than |ddg|-2, the edge is too shallow or too deep to gain 

benefits from value speculation, so the edge can be skipped.  (The length of the modified 

data dependence graph cannot be reduced after performing the value speculation 

transformation on shallow or deep edges, because the predicting and verifying nodes and 

new edges are added.) 

In Step 2, combining the previous edge selection, se->edges, and the candidate 

edge forms a new edge selection, new_edges.  The selection table is searched to check if 

a selection entry with the same new_edges already exists.  If so, the algorithm continues 

to the next loop iteration.  Otherwise, the table gets an empty selection entry, new_se, and 

stores the new edge selection, new_edges, to that entry. 

In Step 3, the current ddg is updated by performing the value speculation 

transformation on the edge, including breaking the candidate edge and adding necessary 

    Edges  Benefit 

{E2}   0.995 
  
 Selection_Entry ---> 
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nodes and edges.  Then, from Property 1 of decomposition, the new benefit is calculated 

as the sum of the old_benefit (= se->benefit) and the benefit_difference, and is saved to 

the entry, new_se->benefit.  If the new benefit is greater than the current_max_benefit, 

the current_max_benefit is updated and the best_se points to the new_se.  If the benefits 

are the same, the new_se is attached to the linked list by searching from the best_se. 

In Step 4, the possible maximal benefit, possible_max_benefit, is calculated as the 

new benefit plus the possible benefit for the current ddg by removing all remaining 

candidate edges temporarily.  The recursion continues if the possible_max_benefit can 

beat or equal the current_max_benefit. 

In Step 5, all changes of the ddg made in this level are undone, such that the 

Selection_Algorithm is ready to test the next candidate edge.  After the 

Selection_Algorithm stops, if the current_max_benefit is greater than 0, an optimal 

solution is found by searching the linked list from the best_se to get a minimal set of 

edges that yield the maximal benefit (=current_max_benefit). 

3.4.2 Running Time Analysis 

To analyze the complexity of the proposed optimal edge selection algorithm, a 

call graph of the Selection_Algorithm for one data dependence graph in 129.compress is 

shown in Figure 3.11.  Each node in the call graph represents one instance of the 

Selection_Algorithm.  Inside each node, the first number is the called order of the 

Selection_Algorithm, and the second number is the corresponding benefit that the 

Selection_Algorithm finds after performing value speculation transformation on one 

specific edge selection.  Having 12 candidate edges in the data dependence graph for the 

call graph shown in Figure 3.11, the Selection_Algorithm is called only 29 times.  Note 
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that a brute-force method needs to try 212 = 4096 combinations to find an optimal solution 

for 12 candidate edges.  This shows that the Selection_Algorithm is quite efficient to find 

an optimal solution that yields the maximal benefit.  In the call graph shown in Figure 

3.11, the function call in the first level corresponds to the DDG0, the function calls in the 

second level correspond to the DDG1, and so on.  Some function calls make recursions, 

and some function calls stop in certain levels of the modified DDG.  This is due to the 

branch-and-bound condition in Step 4 of Figure 3.9.  If the possible maximal benefit is 

less than the current maximal benefit, the recursion stops.  

 

 

Figure 3.11 A call graph of the Selection_Algorithm for one data dependence graph 
in 129.compress.  In each node, the first number is the called order, and the second 

number is the corresponding benefit that the Selection_Algorithm finds. 
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The running time of the proposed optimal edge selection algorithm is proportional 

to the number of selection entries that it tries multiplied by the running time of finding 

critical paths, which is O(|N| + |E|), in the Selection_Algorithm.  In the best case where 

penalties of nodes are very large, the Selection_Algorithm does not continue the recursion 

after trying one edge in the Selection_Algorithm.  Also, shallow, deep, or non-critical 

edges are skipped in Step1, so in the best case the Selection_Algorithm tries less than |E| 

combinations and then stops.  The best-case running time is O(|E|) * O(|N| + |E|).  In the 

worst case where penalties of nodes are very small, the algorithm always continues the 

recursion and tries almost all combinations of edges.  Thus, the worst-case running time 

is exponential, with O(2|E|) * O(|N| + |E|).  However, because not all operations are highly 

predictable and the penalties of nodes vary, the average running time of the proposed 

algorithm is observed to be polynomial and efficient in our experiments. 

Figure 3.12 shows the empirical running time analysis of the optimal edge 

selection algorithm applied to the data dependence graphs of the 20 most heavily 

executed paths selected from each SPECint95 benchmark.  In Figure 3.12, the x-axis is 

the number of candidate edges, and the y-axis is the number of combinations that the 

Selection_Algorithm tries.  From Figure 3.12, most benchmarks have less than 40 

candidate edges for the Selection_Algorithm to try, except that 132.ijpeg has up to 160 

candidate edges.  With so many candidate edges, the algorithm tries less than 10,000 

combinations for all data dependence graphs except one graph in 124.m88ksim that 

yields 14,599 combinations.  From the data points in Figure 3.12, the average trend line is 

y = 0.0016x3 - 0.67x2 + 67.349x - 306.35, so the empirical average running time is O(|E|3) 

* O(|N| + |E|).  Also, the empirical worst-case trend line is y = 0.1012x4 - 5.1062x3 + 
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80.286x2 - 416.35x + 467.08.  In Chapter 4, the value prediction accuracy heuristics are 

proposed to speed up the optimal edge selection algorithm by more than 80% and still 

find good benefits from value speculation.  To implement the optimal edge selection 

algorithm in a production compiler, a bail-out mechanism can be employed in the 

Selection_Algorithm based on an upper bound of combinations that the algorithm can try, 

so the running time is controlled within a certain limit. 

 

The Empirical Running Time Analysis
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Figure 3.12 The empirical running time analysis of the optimal edge selection 
algorithm.  For all data points, the average-case complexity is y = 0.0016x3 - 0.67x2 + 
67.349x - 306.35.  The worst-case complexity is y = 0.1012x4 - 5.1062x3 + 80.286x2 - 

416.35x + 467.08. 

3.5 Experimental Results 

In this section, the optimal edge selection algorithm was experimented for the 

value speculation scheme on a statically-scheduled machine with compiler-generated 
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recovery code [22].  The target architecture is a VLIW machine model based on the 

Hewlett-Packard Laboratories HPL-PD architecture [20].  All operations have a one-

cycle latency except for load (two cycles), floating-point add (two cycles), floating-point 

subtract (two cycles), floating-point multiply (threes cycles), and floating-point divide 

(three cycles).  All SPECint95 programs were compiled with classic optimizations by the 

IMPACT compiler from the University of Illinois [18] and converted to the Rebel textual 

intermediate representation by the Elcor compiler from Hewlett-Packard Laboratories 

[19].  Then, the LEGO compiler, developed at North Carolina State University, was used 

to insert profiling code, form treegions, and schedule operations [17].  After 

instrumentation for profiling, intermediate code from the LEGO compiler was converted 

to C code.  Executing the resultant C code generated profiling data. 

Several experimental results are presented in this section.  Section 3.5.1 presents 

the results of value profiling and branch profiling, which are used to model penalties for 

mispredicting nodes.  Section 3.5.2 shows the maximal benefit from value speculation on 

the 20 most heavily executed paths in the SPECint95 benchmarks.  Section 3.5.3 analyzes 

the selected edges, producer operations, and consumer operations. 

3.5.1 Results of Value Profiling and Branch Profiling 

As discussed in Section 3.2, to model the penalties for mispredicting nodes, the 

value misprediction rates and the BNE branch misprediction rates are required and 

provided by program profiling [4], [7] in the experiments. 
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Value Prediction Accuracies and BNE Branch Prediciton Accuracies of 
Integer-Register-Writing Operations in SPECint95
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Figure 3.13 Value prediction accuracies and BNE branch prediction accuracies of 
integer-register-writing operations in the SPECint95 benchmarks. 
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Figure 3.14 BNE branch prediction accuracies sorted by their corresponding value 
prediction accuracies. 
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A hybrid value predictor [13], [22], which contains stride [4], [10], [13] and 

context-based value predictors [10], [11], was used to profile all integer-register-writing 

operations.  The value prediction table size equals the number of all integer-register-

writing operations in each SPECint95 program.  For context-based value predictors, the 

entry in the first level table records one actual result that indexes a local second level 

table with 16 entries.  Simple two-bit counters were used to predict the BNE branches for 

verifying value prediction.  Figure 3.13 shows the value prediction accuracies and the 

BNE branch prediction accuracies for integer-register-writing operations in the 

SPECint95 benchmarks.  The average value prediction accuracy is 61.62%, lower than 

the average BNE branch prediction accuracy of 88.81%.  In general, the BNE branches 

have high predictability, so that the processor can accurately predict to execute recovery 

code.  The correct BNE branch prediction avoids the penalties for flushing pipeline stages 

in the case of branch misprediction. 

The average BNE branch prediction accuracies are presented in Figure 3.14 by 

sorting them based on the corresponding value prediction accuracies.  For highly 

predictable operations and highly unpredictable operations, the BNE branches have very 

high predictability.  For operations with medium value prediction accuracies around 50%, 

their BNE branch prediction accuracies are the lowest.  In 134.perl, the BNE branches 

that correspond to the value prediction accuracy between 40% and 60% have the branch 

prediction accuracy lower than 50%.  Predicting operations with low BNE branch 

predictability may lead to high penalties for value misprediction.  In Figure 3.14, the data 

points that correspond to value prediction accuracies lower than 10% or higher than 90% 

are very close to each other.  However, the data points that correspond to value prediction 
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accuracies between 30% and 60% are very distant.  The reason is that operations tend to 

be highly predictable or highly unpredictable, so there are many operations that 

contribute to the average accuracy and the variance is small among SPECint95 

benchmarks.  Operations with medium value predictability are very few, so the variation 

of the average branch prediction accuracy among different benchmarks is large. 

3.5.2 Maximal Benefits from Value Speculation 

For further experiments of the optimal edge selection algorithm, the 20 most 

heavily executed paths were chosen from each SPECint95 benchmark.  Penalties for 

mispredicting nodes were modeled based on the profile results and three different branch 

misprediction penalties of 2, 5, and 10 cycles.  Running the optimal edge selection 

algorithm generates the results of an optimal set of edges and the corresponding maximal 

benefit.  Analyzing the results helps us realize the potential of value speculation.  Figure 

3.15 shows the number of improved paths under different branch misprediction penalties.  

A path is counted as an improved path if the optimal edge selection algorithm can find a 

positive maximal benefit.  Using branch misprediction penalties of 2, 5, and 10 cycles, 

the average numbers of improved paths are 5.875, 5.375, and 5.25 out of 20 paths.  The 

larger branch misprediction penalties, the fewer paths can be improved by value 

speculation.  In the SPECint95 benchmarks, 124.m88ksim has the most improved paths 

of 11.  However, 132.ijpeg and 099.go have one or no paths improved by value 

speculation.  The other benchmarks have around six improved paths. 

Figure 3.16 shows the speedup of value speculation, which is measured as the 

maximal benefit divided by the minimal cycles of executing the original data dependence 

graph.  As the branch misprediction penalty increases, the speedup decreases.  When 
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using a 10-cycle branch misprediction penalty, 124.m88ksim gets the highest speedup of 

25.57%.  147.vortex has the second highest speedup of 16%.  126.gcc, 129.compress, 

130.li, and 134.perl have significant speedups around 9% that are available for the value 

speculation techniques to exploit.  The average speedup is 9.61% for all SPECint95 

benchmarks.  099.go and 132.ijpeg with no or small speedups are not good candidates for 

value speculation.  The results of Figures 10 and 11 suggest that if the penalties for 

branch misprediction are high, the optimization opportunities for the value speculation 

techniques will decrease, and the value speculation technique needs to carefully select 

and break dependences. 
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Figure 3.15 The number of improved paths using branch misprediction penalties of 
2, 5, and 10 cycles.  (Note that 099.go has no improved paths in all cases.) 
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The Speedup of Value Speculation on the 20 Most Heavily Executed 
Paths

0%

5%

10%

15%

20%

25%

30%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

ompre
ss

13
0.l

i

13
2.i

jpeg

13
4.p

erl

14
7.v

orte
x

Arit
hmeti

c M
ea

n

SPECint95

S
p

ee
d

u
p

Penalty_2 Penalty_5 Penalty_10

 

Figure 3.16 The speedup of value speculation on the 20 most heavily executed paths 
using branch misprediction penalties of 2, 5, and 10 cycles.  (Note that 099.go has no 

speedups in all cases.) 

 

3.5.3 Results of Selected Edges and Nodes 

Knowing the maximal benefit from value speculation in Section 3.5.2, the optimal 

set of edges selected by the algorithm is examined in terms of the value prediction 

accuracy distribution and the location distribution.  The location distributions and the 

opcodes of the selected producer and consumer operations are also presented. 

The value prediction accuracy distribution of the selected edges using a 10-cycle 

branch misprediction penalty is shown in Figure 3.17.  Surprisingly, 66% of the selected 

edges have value prediction accuracies over 99%.  There are very few selected edges 

whose prediction accuracies are lower than 94%.  The high penalties for value 

misprediction make the optimal edge selection algorithm select very highly predictable 
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edges to break.  This implies that the high value prediction accuracy threshold or the 

confidence mechanism [8] is necessary to reduce the impact of value misprediction.  

The location distribution of the selected edges is shown in Figure 3.18.  The 

locations in the data dependence graph are normalized to the original length of the data 

dependence graph.  Zero indicates the top location and one indicates the bottom location 

in the data dependence graph.  Each bar in Figure 3.18 shows the percentage of edges that 

cross the specific location in the data dependence graph.  In Figure 3.18, 21.27% of edges 

cross the 0.4 normalized location, producing the most frequent crossing area.  The 

selected edges tend to span the middle location of the data dependence graph, but more 

rarely cross the locations toward the top or the bottom.  Intuitively, breaking edges that 

cross the middle location obtains large cycle savings by splitting the data dependence 

graph into half. 
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Figure 3.17 The value prediction accuracy distribution of the selected edges (using a 
10-cycle branch misprediction penalty). 
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The Location Distribution of Selected Edges
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Figure 3.18 The location distribution of the selected edges (using a 10-cycle branch 
misprediction penalty). 

 

After examining the locations of the selected edges, the location distributions of 

the selected producer and consumer operations are shown in Figures 3.19 and 3.20.  Each 

bar in Figures 3.19 and 3.20 represents the percentage of operations that originally stay 

between two adjacent normalized locations in the data dependence graph.  In Figure 3.19, 

the selected producer operations are likely to reside in the upper portion of the data 

dependence graph.  26.5% of the producer operations are between the 0.2 and 0.3 

normalized locations, producing the most frequent crossing area.  Conversely, the 

selected consumer operations appear toward the lower part of the data dependence graph.  

21.68% of the consumer operations are between the 0.6 and 0.7 normalized locations, 

producing the most frequent crossing area.  The different locations of the producer and 

consumer operations may explain why most of the selected edges cross the middle 
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locations of the data dependence graph.  From the results that the selected producer and 

consumer operations appear in many different locations, the heuristics of selecting 

operations based on only one specified location [24] may not obtain maximal benefits 

from value speculation. 

The top five opcodes of the selected producer and consumer operations are shown 

in Table 3.2.  The top two opcodes of the producer operations are LOAD (WORD) with 

49.39% and LOAD (BYTE) with 13.25%.  Because load operations have two-cycle 

latencies and other integer operations have one-cycle latencies, load operations are 

usually on the critical paths.  Predicting load operations can often reduce the length of the 

critical path, so load operations are selected most frequently.  For the consumer 

operations, ADD, AND, and OR are the top three opcodes with 27.71%, 15.66%, and 

14.45%.  The percentage differences are small for different consumer operations, when 

compared to the percentage difference of the top two producer operations.  The results 

suggest that long-latency operations be good candidates for value prediction.  However, 

choosing different operations to consume the predicted values does not matter 

significantly. 

 

Table 3.2 The top five opcodes and percentages of the selected producer and 
consumer operations (using a 10-cycle branch misprediction penalty). 

Rank Opcode and Percentage of 

Producer Operations 

Opcode and Percentage of 

Consumer Operations 

1 LOAD (WORD) => 49.39% ADD => 27.71% 

2 LOAD (BYTE) => 13.25% AND => 15.66% 

3 AND => 9.63% OR => 14.45% 

4 ADD  => 7.22% LOAD (WORD) => 10.84% 

5 MOVE => 6.02% SUB => 8.43% 
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The Location Distribution of Selected Producer Operations
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Figure 3.19 The location distribution of the selected producer operations in data 
dependence graphs (using a 10-cycle branch misprediction penalty). 

 

The Location Distribution of Selected Consumer Operations
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Figure 3.20 The location distribution of the selected consumer operations in data 
dependence graphs (using a 10-cycle branch misprediction penalty). 
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3.6 Summary 

In this chapter, an optimal edge selection problem is proposed to model the value 

speculation techniques.  This model helps us understand and improve the techniques for 

value speculation.  Based on three properties observed from the optimal edge selection 

problem, an algorithm is designed to solve the optimal edge selection problem efficiently.  

The output of the optimal edge selection algorithm indicates an optimal set of edges that 

can be broken to obtain maximal benefits from value speculation.  From the experimental 

results, the average speedup of value speculation is 9.61% on the 20 most heavily 

executed paths selected from each SPECint95 benchmark.  Most of the selected edges 

have value prediction accuracies over 99%, so the impact of value misprediction is 

minimized.  The location distributions of the selected edges and the opcodes of the 

selected producer operations provide insights to adjust the heuristic values used in the 

value speculation techniques. 

In Chapter 4, the optimal edge selection algorithm is proposed to serve as a new 

compilation phase of benefit analysis to expose an optimal set of edges (dependences) to 

the dynamically-scheduled machines by using special bits in an instruction format for 

breaking flow dependences dynamically, or to the compiler for performing the VSS 

optimization statically.  Thereby, the techniques for value speculation can provide the 

largest speedups for microprocessors. 
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Chapter 4    
 
Compiler-Directed Edge Selection 

It is a challenging task for a value speculation technique to select dependences to 

break to improve the performance of microprocessors.  The reasons are many.  Predicting 

operations with low predictability results in adverse effects on execution time due to 

frequent execution of recovery code (or frequent re-execution of operations that are 

affected by mispredicted values.)  However, predicting operations with high 

predictability may not shorten execution time, because other data dependences may still 

exist in a program.  Also, after predicting operations on a critical path, the newly created 

critical path may still limit program execution, resulting in critical path lengths that are 

not significantly shorter.  Moreover, due to the nature of speculative execution, non-

speculative and speculative operations compete for machine resources.  As discussed in 

Section 3.1, the I-Cache, D-Cache, and branch predictor are all affected by speculative 

execution.  If there are small benefits in terms of ideal execution cycles after applying 
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value speculation, the penalties of I-Cache, D-Cache, and branch misprediction stalls will 

counteract the benefits, and the net speedup of value speculation will be negative. 

In this Chapter, we propose using compiler-directed edge selection to let the value 

speculation techniques know which dependences should be broken dynamically or 

statically.  The compiler-directed edge selection serves as a new compilation phase of 

benefit analysis, which is an application derived from the optimal edge selection 

algorithm introduced in Chapter 3.  Running the optimal edge selection algorithm finds a 

minimal set of edges (dependences) that the value speculation techniques can break to 

yield maximal benefits.  The selected dependences are exposed to the dynamic hardware 

by using special fields in the instruction format or to the value speculation scheduler 

statically.  To efficiently use the compiler-directed edge selection, employing value 

prediction accuracy thresholds can speed up the original optimal edge selection 

algorithm. 

The remainder of this chapter is organized as follows.  Section 4.1 describes the 

schemes of exposing compiler-directed edge selection to dynamically-scheduled and 

statically-scheduled machines.  Section 4.2 introduces the heuristics to speed up the 

optimal edge selection algorithm.  Section 4.3 presents experimental results of exposing 

compiler-directed edge selection to the VSS scheme [22], including the edge selection, 

the code size expansion, the register pressure, and the execution time speedup.  Section 

4.4 concludes this chapter. 
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4.1 Schemes of Exposing Compiler-Directed Edge Selection 

To expose compiler-directed edge selection to dynamically-scheduled machines, 

special fields in an instruction are used to indicate the selected dependences that need to 

be broken.  In [4], special directives in the opcodes are proposed to select specific value 

prediction methods, such as last value or stride.  Figure 4.1 shows an instruction format 

that supports choosing a prediction method [4] and provides specific dependences for the 

value speculation techniques to break in dynamically-scheduled machines.  Four new 

fields of PM, D, S1, and S2 are added in an instruction.  The PM field indicates which 

value predictor is used to generate a prediction.  The bit width of the PM field depends on 

how many value predictors are available in the hardware.  The D field is a 1-bit field to 

decide if the prediction needs to be made for this instruction.  The S1 and S2 fields are 1-

bit fields that determine to consume the predicted values for value-speculative execution, 

if the actual results of source registers are not ready.  The new instruction format 

alleviates the burden for the hardware to dynamically decide which operation to predict 

and which operation to consume a predicted value.  Previously, the instruction selection 

is based either on the confident level of predictions or on the critical path information of 

instructions [8], [9]. 

For statically-scheduled machines, the selected edges (dependences) are directly 

fed to the compiler to perform the VSS optimization [24].  The value speculation 

scheduler breaks the selected dependences by inserting predicting operations (LDPRED), 

generates recovery code, and schedules operations aggressively. 
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Figure 4.1 An instruction format that can choose a prediction method and specify 
dependences for value speculation. 

 

4.2 Heuristics Applied to the Optimal Edge Selection 
Algorithm 

To efficiently use the compiler-directed edge selection, the running time of the 

optimal edge selection algorithm shown in Figure 3.9 must be reduced.  Heuristics of 

value prediction accuracy thresholds are proposed to speed up solving the optimal edge 

selection problem.  In Step 1 of the algorithm shown in Figure 3.9, the value prediction 

accuracy thresholds can be used to filter out more candidate edges.  Five different value 

prediction accuracy thresholds of 80%, 85%, 90%, 95%, and 99% were experimented for 

the 20 most heavily executed paths in each SPECint95 benchmark. 

Figure 4.2 shows the normalized number of edge selections that are tried by the 

original algorithm and the algorithms with five different thresholds.  When increasing the 

value prediction accuracy threshold, the number of selections decreases by a certain 

amount.  In 124.m88ksim, the thresholds of 80%, 85%, 90%, and 95% cannot filter out 

edges effectively; only the threshold of 99% reduces a lot of combinations, because most 

operations in 124.m88ksim are very highly predictable.  In 099.go and 132.ijpeg, 

applying all value prediction accuracy thresholds yields very few or no selections, 

PM  D  S1  S2   Opcode   Dest Reg   Src1 Reg   Src2 Reg 

PM: Selecting a prediction method to generate a prediction 
D: Indicating to generate a prediction for the destination register 
S1: Indicating to consume a predicted value for the source register 1 
S2: Indicating to consume a predicted value for the source register 2 
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because operations in these benchmarks have very low predictability.  In 126.gcc, 

129.compress, 130.li, 134.perl, and 147.vortex, the value prediction accuracy thresholds 

of 90%, 95%, and 99% effectively reduce more than 80% of combinations compared to 

the original number of selections.  For all benchmarks, the algorithm with the value 

prediction accuracy threshold of 99% yields the fewest combinations. 

Figure 4.3 shows the normalized maximal benefit from value speculation that is 

found by the original algorithm and the algorithms with five different value prediction 

accuracy thresholds for the 20 most heavily executed paths in each SPECint95 

benchmark.  The algorithm with the value prediction accuracy threshold of 80% yields 

the same maximal benefit as the one found by the original algorithm for all SPECint95 

benchmarks.  Using the thresholds of 85% and 90%, the algorithm gets the same maximal 

benefit for all benchmarks except for 147.vortex.  In 126.gcc, 129.compress, and 

147.vortex, using the threshold of 95% reduces the maximal benefit by 3.5%, 29%, and 

13% respectively.  In Figure 4.2, the threshold of 99% can reduce the most running time 

of the original algorithm, but the corresponding maximal benefit drops significantly for 

most of the benchmarks as shown in Figure 4.3.  From the results of Figures 4.2 and 4.3, 

the value prediction accuracy threshold of 90% is a good heuristic value that can be 

applied to the original optimal edge selection algorithm to speed up the analysis by more 

than 80% for most of the SPECint95 benchmarks, and still get benefits close to the 

original maximal benefits. 
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The Normalized Number of Edge Selections for the 20 Most Heavily 
Executed Paths
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Figure 4.2 The normalized number of edge selections that are tried by the original 
algorithm and the algorithms with five value prediction accuracy thresholds for the 

20 most heavily executed paths in SPECint95. 
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Figure 4.3 The normalized maximal benefit using the original algorithm and the 
algorithms with five value prediction accuracy thresholds for the 20 most heavily 

executed paths in SPEint95.  (Note that 099.go has no benefits in all cases.) 
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4.3 Experimental Results 

Several experimental results of exposing compiler-directed edge selection to the 

VSS optimization are presented in detail, including the edge selection in Section 4.3.1, 

the code size expansion in Section 4.3.2, the register pressure in Section 4.3.3, and the 

execution time speedup in Section 4.3.4. 

4.3.1 Edge Selection 

In the experiments, the optimal edge selection algorithm with the value prediction 

accuracy threshold of 90% was performed on the 20 most heavily executed paths selected 

from each SPECint95 benchmark.  Table 4.1 shows the results of the maximal benefit, 

the number of selected edges, the number of selected producer operations, and the 

number of selected consumer operations.  The maximal benefit is the average percentage 

of critical path reduction for the 20 most heavily executed paths in each benchmark.  In 

Table 4.1, 124.m88ksim and 147.vortex have the highest benefits of 25.57% and 14.69%.  

In 126.gcc, 129.compress, 130.li, and 134.perl, the maximal benefits are significant with 

8%.  099.go and 132.ijpeg are not good candidates for value speculation, because their 

benefits are negligible. 

In Table 4.1, the number of the selected edges indicates how many dependences 

are to be broken via the value speculation techniques.  The number of the selected 

producer operations is the number of predictions that the value predictor generates, and 

the number of the selected consumer operations is the number of operations that consume 

predicted values for the source operands.  For all programs except for 124.m88ksim and 

129.compress, the numbers of edges, producer operations, and consumer operations are 
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the same.  This means that each predicted operation feeds to only one consumer 

operation, and each consumer operation receives only one predicted value for value-

speculative execution.  In 124.m88ksim and 129.compress, some predicted values are 

used by more than one consumer operations, and some consumer operations use more 

than one predicted values for the source operands. 

 

Table 4.1 Results of the optimal edge selection algorithm with the value prediction 
accuracy threshold of 90% on the 20 most heavily executed paths in SPECint95. 

SPECint95 The Maximal 

Benefit 

# of Selected 

Edges 

# of Producer 

Operations 

# of Consumer 

Operations 

099.go 0% 0 0 0 

124.m88ksim 25.57% 33 30 28 

126.gcc 8.81% 8 8 8 

129.compress 9.49% 15 11 14 

130.li 8.15% 6 6 6 

132.ijpeg 0.81% 1 1 1 

134.perl 8.04% 9 9 9 

147.vortex 14.69% 11 11 11 

Average 9% 10.375 9.5 9.625 

 

For further experiments on the VSS optimization, the SPECint95 benchmarks 

except for 099.go and 132.ijpeg were chosen.  The selected edges (dependences) were 

exposed to the compiler to perform VSS for a 16-issue VLIW machine model based on 

the Hewlett-Packard Laboratories HPL-PD architecture [20].  All operations have a one-

cycle latency except for load (two cycles), floating-point add (two cycles), floating-point 

subtract (two cycles), floating-point multiply (threes cycles), and floating-point divide 

(three cycles).  The SPECint95 programs were compiled with classic optimizations by the 

IMPACT compiler from the University of Illinois [18] and converted to the Rebel textual 
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intermediate representation by the Elcor compiler from Hewlett-Packard Laboratories 

[19].  Then, the LEGO compiler [17] scheduled base code (without the VSS 

optimization) and VSS-optimized code.   

 

Table 4.2 The code size of base code and VSS-optimized code in SPECint95.  (The 
unit is the number of single operations.) 

SPECint95 Base Code VSS-Optimized 

Code 

Difference  

(VSS – Base) 

Ratio 

(VSS / Base) 

124.m88ksim 46,496 47,165 669 1.014 

126.gcc 500,602 500,957 355 1.000 

129.compress 1,773 2,213 440 1.248 

130.li 14,982 15,191 209 1.014 

134.perl 92,253 92,876 623 1.006 

147.vortex 212,471 212,785 314 1.001 

Average 144,762 145,197 435 1.048 

 

4.3.2 Code Size Expansion 

Table 4.2 shows the code size of base code and VSS-optimized code.  The unit is 

the number of single operations in a program.  The difference and the ratio between VSS-

optimized code and base code are presented in columns 4 and 5 of Table 4.2.  After 

applying VSS, the code size increases, because recovery code and new operations, such 

as LDPRED, UDPRED, and BNE [24], are generated in VSS-optimized code.  The 

difference of VSS-optimized code and base code is averaging 435 operations, and the 

code size ratio is 1.048 on an average.  124.m88ksim has the largest code size difference 

of 669 operations, because there are the most selected edges to be broken as shown in 

Table 4.1.  134.perl is second with 623 additional operations in VSS-optimized code. 

130.li has the fewest additional operations, because only six edges are selected in Table 
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4.1.  If the code size expansion is huge, the performance of the I-Cache will be degraded 

and the benefits from value speculation will be affected. 

4.3.3 Register Pressure 

Table 4.3 presents the register usage in the procedures that are different between 

base code and VSS-optimized code.  In general, because the VSS scheme creates 

recovery code and uses new registers to store the predicted values, the register usage of 

VSS-optimized code is higher than that of base code. 

 

Table 4.3 The register usage in the procedures that are different between base code 
and VSS-optimized code. 

 Base Code VSS-Optimized Code 

Register Usage Average Maximum Spilled Average Maximum Spilled 

124.m88ksim 12.26 37 0 13.19 37 0 

126.gcc 21.75 52 0 22.5 45 0 

129.compress 9.33 21 0 10 25 0 

130.li 6.22 18 0 6.31 18 0 

134.perl 15.82 128 1 15.94 128 1 

147.vortex 14.49 65 0 14.61 65 0 

Overall 13.31 128 1 13.76 128 1 

 

For all programs, VSS-optimized code uses averaging 13.76 registers that are 

higher than 13.31 registers for base code.  In our VLIW machine model, there are 128 

integer registers.  If the register allocator cannot assign 128 architectural registers to all 

virtual registers used in a procedure, the spilling and filling code will be introduced.  In 

134.perl, base code and VSS-optimized code contain one spilled register.  For the other 

benchmarks, up to 65 registers are enough to assign all virtual registers in base code and 

VSS-optimized code.  From the results of Table 4.3, VSS-optimized code does not 
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increase the register pressure very much.  However, in one procedure of 126.gcc, VSS-

optimized code actually requires fewer registers than base code does.  Because the ILP 

transformation via VSS breaks the critical path and may shorten the register lifetime, 

fewer architectural registers are required to assign all virtual registers in the procedure of 

VSS-optimized code in 126.gcc. 

4.3.4 Execution Time Speedup 

Trace simulation was performed for evaluating the speedup of VSS-optimized 

code over base code on nine machine models, which are composed of functional blocks 

shown in Table 4.4.  In Table 4.4, there are four functional blocks: execution, I-Cache, D-

Cache, and branch predictor blocks.  The execution block is capable of issuing and 

executing 16 operations per cycle with 16 universal functional units.  The I-Cache block 

is a 64k-byte compressed I-Cache with two banks [33].  The D-Cache block is a 4-way 

cache with 64k-byte data storage.  The branch predictor block employs multi-way branch 

prediction [34], [35] with 214 entries in the branch prediction table (BPT) and 214 entries 

in the branch target buffer (BTB).  The branch misprediction stalls are 2, 5, or 10 cycles. 

Figure 4.4 shows the execution time speedup of VSS-optimized code over base 

code using nine machine models.  The first model is composed of the execution block, 

and represents an ideal model that calculates pure execution cycles in the pipeline.  The 

next five models consist of the execution and I-Cache, execution and D-Cache, execution 

and branch (2-cycle stalls), execution and branch (5-cycle stalls), and execution and 

branch (10-cycle stalls).  The last three models represent realistic models that contain the 

execution, I-Cache, D-Cache, and branch predictor with 2-, 5-, or 10-cycle stalls. 
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Table 4.4 Functional blocks used for composing different machine models. 

Blocks Specification 

Execution Dispatch/issue/retire bandwidth: 16 

Universal functional units: 16 

Operation latencies are described in Section 4.3.1. 

I-Cache Compressed (zero-nop) and two banks with 64k bytes [33] 

Line size = 16 operations (each bank) 

Miss penalty = 12 cycles 

D-Cache Size/assoc./repl. = 64kB/4-way/LRU 

Line size = 32 bytes 

Miss penalty = 14 cycles 

Branch Predictor Multi-way branch prediction [34], [35] 

Branch prediction table (BPT) = 214 entries 

Branch target buffer (BTB) entry/assoc./repl. = 214/8-way/LRU 

Branch misprediction stalls = 2, 5, 10 cycles 

 

The Execution Time Speedup of VSS-Optimized Code over Based Code
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Figure 4.4 The execution time speedup of VSS-optimized code over based code using 
nine machine models. 
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In Figure 4.4, the speedups of VSS-optimized code over base code are positive 

under all machine models.  147.vortex gets the highest speedups ranging from 13.5% to 

16%.  124.m88ksim is second with speedups between 9% and 12.5%.  129.compress has 

the third highest speedups ranging from 3.8% to 8%. 134.perl and 130.li have moderate 

speedups, less than 4 % or 3%.  126.gcc has the lowest speedup of 1% or smaller.  As 

shown in Table 4.1, although the maximal benefits found by the optimal edge selection 

algorithm for the 20 most heavily executed paths are more than 8% in the selected 

SPECint95 benchmarks, the execution time speedups of VSS-optimized code over base 

code are different in Figure 4.4.  126.gcc has small speedups, because its 20 most heavily 

executed paths account for less than 10% of dynamic execution.  In other SPECint95 

benchmarks, the 20 paths account for more than 50% of execution time, but their 

speedups of value speculation are still not the same.  In 124.m88ksim, 129.compress, and 

147.vortex, the scheduler does a good job of scheduling VSS-optimized code.  However, 

after applying VSS to 130.li and 134.perl, the scheduler does not fully exploit the 

exposed ILP, so their speedups are small. 

When comparing the speedups by using different machine models, Model 1 gets 

the highest speedups in all programs except for 147.vortex.  In 147.vortex, using Models 

2, 7, 8, and 9 with the I-Cache has higher speedups than using Model 1.  The reason is 

that the VSS-optimized code changes the formation of basic blocks and exhibits better 

performance of the I-Cache in 147.vortex.  When using Model 3 with the D-Cache, the 

speedups decrease in all programs except for 130.li.  In general, the VSS optimization 

generates more load and store operations to access the D-Cache, and the increased D-

Cache stalls reduce the speedups of value speculation.  When branch predictors are 
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incorporated into Models 4, 5, and 6, the corresponding speedups decrease with increased 

branch misprediction stalls.  For most cases, VSS-optimized code experiences more 

branch misprediction stalls than base code does.  Using the most realistic machine model 

(Model 9) still obtains significant speedups of up to 15%, and 5% on a harmonic mean. 

Table 4.5 shows the execution time breakdown of base code and VSS-optimized 

code when using Model 9.  In Table 4.5, the pipeline stalls account for the largest portion 

of execution time.  VSS-optimized code always has fewer pipeline stalls than base code 

does.  In many cases, VSS-optimized code increases the I-Cache, D-Cache, and branch 

misprediction stalls.  However, in some benchmarks, VSS-optimized code has fewer I-

Cache, D-Cache, or branch misprediction stalls that are highlighted by bold fonts in 

Table 4.5.  Especially for investigating the performance of the multi-way branch 

predictor, the branch misprediction rates of base code and VSS-optimized code are 

shown in Figure 4.5.  The average branch misprediction rate is 5.5% for base code and 

5.6% for VSS-optimized code.  In three benchmarks of 124.m88ksim, 126.gcc, and 

147.vortex, VSS-optimized code has lower branch misprediction rates, while in the other 

three benchmarks of 129.compress, 130.li, and 134.perl, VSS-optimized code has higher 

branch misprediction rates.  The lower branch misprediction rates in VSS-optimized code 

do not always indicate that there are fewer branch misprediction stalls, e.g., 124.m88ksim 

in Table 4.5.  The reason is that VSS-optimized code contains more branches than base 

code does, so the total branch misprediction stalls of VSS-optimized code are still higher 

than those of base code.  The statistics of multi-way branches in base code and VSS-

optimized code are shown in Table 4.6.  Note that each multi-op can have up to 16 

branches in the 16-issue VLIW machine model. 
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Table 4.5 The execution time breakdown of base code and VSS-optimized code by 
using Model 9.  (Bold fonts indicate that VSS-optimized code performs better than 

base code does.) 

SPECint95 Pipeline Stalls I-Cache Stalls D-Cache Stalls Branch Stalls 

Base 68,072,621 8,974,476 85,706 5,002,520 124.m88ksim 

VSS 60,500,902 9,181,224 123,689 5,533,940 

Base 591,322,161 232,412,436 51,586,022 257,558,640 126.gcc 

VSS 585,128,808 236,914,320 51,951,316 255,004,760 

Base 18,756,881 1,056 1,989,003 3,432,190 129.compress 

VSS 17,381,298 1,368 1,989,118 3,950,480 

Base 109,920,236 4,776 23,544,167  23,913,270 130.li 

VSS 107,172,257 4,848 22,622,106 26,562,110 

Base 793,170,935 105,091,332 142,749,914 126,116,250 134.perl 

VSS 761,828,702 110,032,188 142,676,454 128,172,090 

Base 1,007,199,307 413,578,260 64,072,286 64,574,530 147.vortex 

VSS 884,164,188 338,881,688 63,008,854 57,465,640 
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Figure 4.5 Branch misprediction rates of base code and VSS-optimized code by 
using Model 9. 
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Table 4.6 Statistics of multi-way branches in base code and VSS-optimized code.  
Each data represents the number of multi-ops that contains a certain number of 

single branches from 1 to 16. 
 124.m88ksim 126.gcc 129.compress 130.li 134.perl 147.vortex 

# Base VSS Base VSS Base VSS Base VSS Base VSS Base VSS 

1 6144 6210 71518 71540 233 264 2919 2951 13089 13140 27714 27779 

2 1535 1549 24390 24392 78 87 590 599 4026 4047 8422 8427 

3 363 364 4240 4248 7 9 94 94 790 800 1598 1598 

4 160 164 1866 1867 3 3 37 38 285 291 567 569 

5 82 83 957 961 3 5 16 16 158 160 182 182 

6 29 29 626 626 0 1 10 10 77 79 61 61 

7 52 53 643 643 1 1 7 7 60 62 45 45 

8 64 64 690 691 0 0 14 14 86 90 62 63 

9 0 0 22 22 0 0 0 0 3 3 2 2 

10 1 1 14 14 0 0 0 0 1 2 0 0 

11 0 0 12 12 0 0 0 0 0 0 1 1 

12 0 0 2 2 0 0 0 0 2 3 2 2 

13 0 0 4 4 0 0 0 0 2 3 0 0 

14 0 0 4 4 0 0 0 0 1 1 0 0 

15 1 1 4 4 0 0 0 0 1 1 0 0 

16 1 1 20 20 0 0 0 0 18 17 0 0 

Sum 8432 8519 105012 105050 325 370 3687 3729 18599 18699 38656 38729 

 

4.4 Summary 

In this chapter, the schemes of exposing compiler-directed edge selection are 

proposed for the value speculation techniques in dynamically-scheduled and statically-

scheduled machines.  For dynamically-scheduled machines, the new instruction format 

that contains four new fields is designed to select a prediction method and expose the 

specific dependences to the hardware.  The instruction format alleviates the burden for 

the hardware to dynamically decide which dependences to break via value speculation.  

For statically-scheduled machines, the selected dependences are directly fed to the value 

speculation scheduler.  The experimental results of exposing compiler-directed edge 
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selection to the VSS optimization are presented in detail, including the edge selection, the 

code size expansion, the register pressure, and the execution time speedup.  Speedups of 

up to 15% and averaging 5% have been shown on a realistic machine model for 

optimizing the 20 most heavily executed paths in the SPECint95 benchmarks. 
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Chapter 5    
 
Software-Only Value Speculation 
Scheduling 

Value prediction [2], [3], [6] is an interesting research topic that has been 

investigated since 1996.  Researchers and computer architects try to exploit the 

predictability for the values generated by register-writing operations to improve the 

performance of microprocessors.  Techniques for value prediction and value speculation 

have been proposed as hardware-managed mechanisms [2], [3], [5], [8], [9], combined 

hardware and compiler synergies [4], [22], [24], [25], [26], or pure software schemes 

[23], [26].  The pure software techniques have the advantage of being applicable to 

existing microprocessors without adding new value prediction hardware and modifying 

processor pipelines to support value-speculative execution.  In this chapter, we propose 

software-only value speculation scheduling (SVSS) to shorten program execution time, 

and investigate the performance of software static stride value predictors.  The software 

static stride value predictor is chosen because it is very simple and requires at most one 
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operation to generate predicted values.  Instead of using filling and spilling code [23] to 

preserve register values for implementing software static stride value predictors, we 

propose using global registers [32] to reduce the overhead.  Surprisingly, from the 

experimental results, the software static stride value predictor obtains the prediction 

accuracy of 95.47% comparable to 95.81% by using the hardware stride two-delta value 

predictor [10], [13] for predictable operations (whose prediction accuracies are higher 

than 50%) in the SPECint95 benchmarks.  From the results of stride profiling, most of the 

predictable operations have very few distinct stride values.  0, 1, 4, -1, and -4 are the most 

frequently occurring stride values. 

Having a certain amount of predictability of operations, the benefit analysis is 

performed to know which dependences should be broken to obtain maximal benefits from 

value speculation.  Analyzing benefits for the 20 most heavily executed paths in each 

SPECint95 benchmark shows that the average critical path reduction is 9.43%.  From the 

simulation for a VLIW machine model with the I-Cache, D-Cache, and multi-way branch 

predictor that has five-cycle stalls, the execution time speedup of SVSS-optimized code 

over base code has shown to be encouraging with up to 15%, and averaging 4%.  These 

results are based on a configuration of up to 30 global registers available for 

implementing software static stride value predictors.  Modern microprocessors, MIPS 

R10000 [29], Alpha 21264 [30], and Intel Itanium [27], [28], [31], [41] have 64, 80, and 

128 physical integer (or general) registers, but few registers are both logical (or 

architectural) and global for the compiler usage.  Intel Itanium has 32 global registers 

where 18 registers (r14-r31) are scratch registers and may be utilized experimentally for 

the SVSS optimization. 
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The remainder of this chapter is organized as follows.  Section 5.1 introduces 

software-only value speculation scheduling.  Section 5.2 presents the design and analysis 

of software static stride value predictors.  Section 5.3 presents the experimental results.  

Section 5.4 concludes this chapter. 

5.1 Software-Only Value Speculation Scheduling 

The compiler optimization using software static stride value predictors is an ILP 

transformation that inserts software static stride value predictions to break flow (true) 

dependences in a program.  This optimization is called software-only value speculation 

scheduling (SVSS).  Compared to the traditional scheduler that must honor all true 

dependences among operations to form a correct schedule, the value speculation 

scheduler can break true dependences and speculatively schedule value-dependent 

operations aggressively.  The scheduler inserts a predicting operation to generate a 

predicted value and a verifying operation to compare the predicted value with the actual 

result.  In the case of value misprediction, compiler-generated recovery code is used to 

re-execute operations that are affected by incorrect predictions. 

Figure 5.1 shows examples of ILP transformation via value speculation 

scheduling (VSS) introduced in Chapter 2 and software-only value speculation 

scheduling (SVSS).  Figure 5.1(a) lists a sequence of operations that are taken from 

129.compress in the SPECint95 benchmarks.  Figure 5.1(b) presents new code after 

applying VSS, and Figure 5.1(c) lists new code after applying SVSS.  The difference 

between VSS and SVSS is that the former has an explicit ISA to manage value prediction 

hardware, but the latter uses simple ALU operations (ADD and MOVE) to emulate value 
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prediction.  The advantage of SVSS over VSS is that the value prediction hardware is not 

required and SVSS can be applied to existing microprocessors. 

 

 (a) Original code 
 
17: ADD  R8 Ä Label, 0 
 7: AND  R2 Ä R26, 255 
 8: LW    R4 Ä 0(R8) 
10: ADD  R3 Ä R4, 1 
11: SW   0(R8) Ä R3 
12: SW   0(R4) Ä R2 
Next: ...... 

(b) New code after applying VSS 
 
17: ADD   R8 Ä Label, 0 
 7: AND   R2 Ä R26, 255 
 8: LW  R4 Ä 0(R8) 
// load prediction from hardware 
21: LDPRED R9 Ä index 
10: ADD  R3 Ä R9, 1 
11: SW   0(R8) Ä R3 
12: SW  0(R4) Ä R2 
// verify prediction  
22: BNE Recovery R9, R4  
Next: ...... 
 
Recovery: 
// update hardware predictor 
23: UDPRED R4, index  
10’: ADD  R3 Ä R4, 1 
11’: SW  0(R8) Ä R3 
12’: SW  0(R4) Ä R2 
24: JMP Next 

(c) New code after applying SVSS 
 
17: ADD   R8 Ä Label, 0 
 7: AND   R2 Ä R26, 255 
 8: LW  R4 Ä 0(R8) 
// calculate software static stride prediction 
21: ADD  R9 Ä R9, stride 
10: ADD  R3 Ä R9, 1 
11: SW   0(R8) Ä R3 
12: SW  0(R4) Ä R2 
// verify prediction 
22: BNE Recovery R9, R4  
Next: ...... 
 
Recovery: 
// update software static stride predictor 
23: MOVE R9 Ä R4 
10’: ADD  R3 Ä R4, 1 
11’: SW  0(R8) Ä R3  
12’: SW  0(R4) Ä R2 
24: JMP Next 

Figure 5.1 Examples of ILP transformation via VSS and SVSS. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.2 (a) The data dependence graph for code in Figure 5.1(a). (b) The data 
dependence graph for code in Figures 5.1(b) or 5.1(c).  Thick edges and thick-circled 

nodes are deleted or created by VSS or SVSS. 
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In Figure 5.1(b), after applying VSS, three new operations are inserted: an 

LDPRED, operation 21, generating a prediction from a hardware value predictor, a BNE, 

operation 22, verifying the prediction with the correct result, and a UDPRED, operation 

23, correcting the state of the hardware value predictor.  Similarly, in Figure 5.1(c), after 

applying SVSS, three new operations are inserted: an ADD, operation 21, providing a 

prediction to register R9 by adding a static stride to its previous result, a BNE, operation 

22, verifying the prediction with the correct result, and a MOVE, operation 23, storing 

the correct result R4 to R9.  For VSS and SVSS, the compiler is responsible for 

generating recovery code to redirect program execution after value misprediction.  After 

applying VSS and SVSS, the original data dependence graph shown in Figure 5.2(a) is 

collapsed, and the resultant data dependence graph shown in Figure 5.2(b) has a shorter 

length with more instruction-level parallelism available for the scheduler to exploit 

statically [22], [23] or dynamically [26]. 

To improve the performance of microprocessors via SVSS, two aspects should be 

paid attention to: obtaining high prediction accuracies through the use of software static 

stride value predictors and performing benefit analysis for SVSS.  To obtain high 

prediction accuracies, the optimum static stride value needs to be determined for each 

predicted operation.  The benefit analysis is necessary to know how many optimization 

opportunities for SVSS exist in a program and where SVSS should be applied.  As 

presented in Chapters 3 and 4, the benefit analysis is performed by solving an optimal 

edge selection problem in a data dependence graph.  The optimal edge selection problem 

involves finding an optimal set of edges (dependences) to break to obtain maximal 

benefits.  After determining which dependences should be broken, the following tasks for 
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the compiler become simple: inserting the software static stride value prediction, 

breaking the dependence, generating recovery code, and scheduling operations 

aggressively with newly exposed instruction-level parallelism. 

5.2 Design and Analysis of Software Static Stride Value 
Predictors 

As shown in Figure 5.1(c), software static stride value predictors use an ADD 

operation to generate a prediction by adding a constant value (static stride) to a register.  

If the static stride value equals 0, the ADD operation can be eliminated.  For the best 

performance, the static stride values for operations are obtained through program 

profiling [4], [7]. 

To reduce the profiling overhead to determine static stride values, two profiling 

steps are performed: value prediction accuracy profiling and stride profiling.  For the 

value prediction accuracy profiling, operations are profiled using hardware stride value 

predictors [4], [10], [13].  The first profile result contains the prediction accuracies of 

operations using hardware stride value predictors.  For the stride profiling, only 

operations whose prediction accuracies are higher than 50% (from the first profile result) 

are profiled again.  The second profile results show how many different stride values 

occur and how many times each distinct stride value appears for each profiled operation.  

The two profiling steps have fewer overheads than performing the stride profiling only 

once.  Because unpredictable operations (in terms of using hardware stride value 

predictors) may have many different stride values, the stride profiler must spend much 

time searching a profile table and recording new strides into the table.  Due to limitations 
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of memory space and table-searching time, performing the stride profiling only once may 

be inefficient. 

In our experiments, integer-register-writing operations in the top 20 treegions [17] 

in the SPECint95 benchmarks were profiled.  For the purpose of comparing the 

performance of different value predictors, hardware stride and hardware stride two-delta 

value predictors [10], [13] were experimented.  (Note that the difference between 

hardware stride and hardware stride two-delta value predictors is their stride update 

policies.  The stride of the former always equals the difference between the last two 

actual results, but the latter updates the stride when the same stride appears at least twice 

in a row.)  Figure 5.3 shows the results of the first profiling using hardware stride and 

hardware stride two-delta value predictors.  The hardware stride two-delta value predictor 

obtains higher prediction accuracies than the hardware stride value predictor, because the 

two-delta stride update policy is better by tolerating one value misprediction before 

changing strides.  Using the hardware stride two-delta value predictor, 124.m88ksim has 

the highest prediction accuracy of 88.83%, and is a good candidate for value speculation.  

134.perl is the second with 78.02%.  147.vortex has the third highest value prediction 

accuracy of 67.42%.  126.gcc, 129.compress, 130.li and 132.ijpeg have moderate value 

prediction accuracies between 48.38% and 61.21%.  099.go has the lowest value 

prediction accuracy of 34.37%, and may not be suitable for value speculation.  The 

average prediction accuracy using the hardware stride two-delta value predictor is 

61.01%, which is higher than 54.78% by using the hardware stride value predictor. 
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Value Prediction Accuracies of Integer-Register-W riting O perations in 
the Top 20 Treegions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pre
ss

13
0.

li

13
2.

ijp
eg

13
4.

per
l

14
7.v

orte
x

Arit
hm

et
ic 

M
ea

n

S P ECint95

A
cc

u
ra

cy
Ha rdw a re -S tride Ha rdw a re -S tride 2d

 

Figure 5.3 Value prediction accuracies of integer-register-writing operations in the 
top 20 treegions in SPECint95 using hardware stride and hardware stride two-delta 

value predictors. 
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Figure 5.4 The distribution of distinct stride values for predictable operations in the 
top 20 treegions in SPECint95. 
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Table 5.1 The top five stride values for predictable operations in SPECint95.  In 
each grid, the first number is a stride value and the second number in parentheses is 

its corresponding percentage. 

Rank 1 2 3 4 5 

099.go 0 (97.46%) 4 (0.90%) 1 (0.78%) -4 (0.39%) 2 (0.16%) 

124.m88ksim 0 (85.79%) 1 (4.55%) 12 (2.75%) 4 (2.54%) 24 (1.27%) 

126.gcc 0 (95.50%) 1 (1.72%) 4 (1.68%) -4 (0.23%) 16128 (0.21%) 

129.compress 0 (73.78%) 1 (10.27%) -64 (4.59%) -1 (2.43%) 8 (2.16%) 

130.li 0 (83.09%) -60 (4.95%) 1 (2.62%) -1 (1.74%) 12 (1.74%) 

132.ijpeg 0 (71.17%) 4 (7.22%) 1 (4.80%) 2 (3.07%) 32 (2.45%) 

134.perl 0 (85.31%) 1 (4.03%) 4 (2.66%) 64 (1.90%) -1 (1.29%) 

147.vortex 0 (96.34%) 4 (1.71%) 1 (1.44%) -4 (0.16%) 8 (0.16%) 

 

After the value prediction accuracy profiling, the stride profiling was performed.  

Figure 5.4 shows the distribution of distinct stride values for predictable operations in the 

top 20 treegions.  60% of predictable operations have only one or two distinct stride 

values.  About 20% of predictable operations have more than 10 stride values.  The 

results in Figure 5.4 can show that the running time of the stride profiling is not high, 

because most predictable operations have few distinct stride values.  Table 5.1 shows the 

top five stride values and their corresponding percentages in parentheses.  In all 

SPECint95 benchmarks, zero is the most frequent stride value, and it accounts for 

between 71.17% and 97.46% of all stride values.  This means that most of the predictable 

operations generate the same value as the last result.  Other stride values are 1, -1, 4, and 

-4 appearing from the second to the fifth rank.  Examining the source code, these stride 

values occur when operations increase or decrease induction variables or pointers 

(address registers) by 1 (equal to the size of char) or 4 (equal to the size of int).  It is 
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interesting to note that most of the stride values are even numbers, and many of them are 

the power of two, because the computer uses a binary system internally. 

To fully obtain the performance of software static stride value predictors, one 

important thing should be noted: the register for storing predicted values needs to be 

preserved across procedures.  This could be done by using load and store operations to 

fill the register from the memory upon the procedure entrance and spill the register to the 

memory upon the procedure exit.  However, the filling and spilling code introduces 

overhead that reduces the benefits from SVSS [23].  In this chapter, we propose using 

global registers [32] to preserve predicted values to eliminate the overhead.  Modern 

microprocessors, MIPS R10000 [29], Alpha 21264 [30], and Intel Itanium [27], [28], 

[31], [41] have 64, 80, 128 physical integer (or general) registers.  In MIPS R10000 and 

Alpha 21264, many registers are used for hardware register renaming or treated as local 

registers.  In Intel Itanium, there are 32 global (static) registers where 18 registers (r14-

r31) are scratch registers and may be utilized experimentally for the SVSS optimization.  

From the experimental results in Section 5.3, up to 30 global registers were required for 

implementing software static stride value predictors on the 20 most heavily executed 

paths in each SPECint95 benchmark. 

In the experiments, software static stride value predictors using global registers 

and local registers were simulated.  When using local registers, registers for 

implementing software static stride value predictors are not preserved across procedures.  

Figure 5.5 shows the value prediction accuracies using hardware stride, hardware stride 

two-delta, software static stride (global), and software static stride (local) value predictors 

for the same set of predictable operations in the SPECint95 benchmarks.  The average 
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prediction accuracy using the software static stride (global) value predictor is 95.47%, 

which is higher than 93.87% by using the hardware stride value predictor.  The hardware 

stride two-delta value predictor has the highest value prediction accuracy of 95.81%, 

slightly better than the software static stride (global) value predictor.  The software static 

stride (local) value predictor suffers from losing register values across procedures and has 

the lowest value prediction accuracy of 8.68% on an average.  When using the software 

static stride (local) value predictor, 124.m88ksim has the highest prediction accuracy of 

34.20%, because many operations are inside intra-procedural loops and can be predicted 

correctly without preserving registers across procedures (inter-procedurally). 

 

Value Prediction Accuracies of Predictable Operations in the Top 20 
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Figure 5.5 Value prediction accuracies using hardware stride, hardware stride two-
delta, software static stride (global), and software static stride (local) value 
predictors for predictable operations in the top 20 treegions in SPECint95. 
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5.3 Experimental Results 

For analyzing benefits, the optimal edge selection algorithm presented in Chapters 

3 and 4 was performed on the 20 most heavily executed paths selected from each 

SPECint95 benchmark.  Figure 5.6 shows the speedup on the 20 most heavily executed 

paths using hardware stride, hardware stride two-delta, and software static stride value 

predictors.  The speedup is calculated as the maximal benefit divided by the critical path 

length of the original data dependence graph.  In Figure 5.6, using hardware stride two-

delta value predictors and using software static stride value predictors obtain the same 

speedup of 9.43% on an average, which is higher than that by using hardware stride value 

predictors.  When using software static stride value predictors, 124.m88ksim has the 

highest speedup of 24.44%, because 124.m88ksim has the highest value prediction 

accuracy as shown in Figure 5.3.  147.vortex has the second highest speedup of 17.50%.  

099.go and 132.ijpeg have zero or very small speedups, because of their low value 

prediction accuracies.  The other benchmarks show significant speedups between 6% and 

11% that are available for SVSS to exploit. 

After running the benefit analysis, both maximal benefits and optimal sets of 

edges for SPECint95 benchmarks were found.  All SPECint95 benchmarks except 099.go 

and 132.ijpeg were chosen for performing SVSS on the 20 most heavily executed paths.  

The SPECint95 programs were compiled with classic optimizations by the IMPACT 

compiler from the University of Illinois [18] and converted to the Rebel textual 

intermediate representation by the Elcor compiler from Hewlett-Packard Laboratories 

[19].  Then, the LEGO compiler [17] scheduled base code and SVSS-optimized code on a 

16-issue VLIW machine model based on the Hewlett-Packard Laboratories HPL-PD 
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architecture [20].  All operations have a one-cycle latency except for load (two cycles), 

floating-point add (two cycles), floating-point subtract (two cycles), floating-point 

multiply (threes cycles) and floating-point divide (three cycles). 
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Figure 5.6 The speedup on the 20 most heavily executed paths in each SPECint95 
benchmark using hardware stride, hardware stride two-delta, and software static 

stride value predictors.  (Note that 099.go has no speedups in all cases.) 

 

As described in Section 5.2, global registers are used for preserving predicted 

values across procedures.  Table 5.2 shows the number of global registers required for 

implementing software static stride value predictors on the 20 most heavily executed 

paths.  124.m88ksim requires 30 global registers, which is the most.  Other benchmarks 

need between 6 and 11 global registers.  In the experiments, in additional to the 128 

integer registers, up to 30 global registers were used for the compiler to implement 

software static stride value predictors.  
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Table 5.2 The number of global registers required for implementing software static 
stride value predictors on the 20 most heavily executed paths in SPECint95. 

SEPCint95 124.m88ksim 126.gcc 129.compress 130.li 134.perl 147.vortex 

# of Global 

Registers 

30 9 6 6 11 11 

 

Table 5.3 Three 16-issue VLIW machine models. 

Machine  Configuration 

Model 1 Dispatch/issue/retire bandwidth: 16 

Universal functional units: 16 

I-Cache: ideal 

D-Cache: ideal 

Branch predictor: ideal 

Model 2 Dispatch/issue/retire bandwidth: 16 

Universal functional units: 16 

I-Cache: Compressed (zero-nop) and two banks with 64k bytes [33] 

 Line size = 16 operations (each bank) 

 Miss penalty = 12 cycles 

D-Cache: Size/assoc./repl. = 64kB/4-way/LRU 

 Line size = 32 bytes 

 Miss penalty = 14 cycles 

Branch predictor: multi-way branch prediction [34], [35] 

 Branch prediction table (BPT) = 214 entries 

 Branch target buffer (BTB) entry/assoc./repl. = 214/8-way/LRU 

Branch misprediction stalls = 5 cycles 

Model 3 Same as Model 2 except branch misprediction stalls = 10 cycles 

 

Trace simulation was performed for three different 16-issue VLIW machine 

models shown in Table 5.3.  In Table 5.3, Model 1 represents an ideal machine model 

without I-Cache stalls, D-Cache stalls, and branch misprediction penalties.  Model 2 

represents a realistic model with a 64k-byte compressed I-Cache [33], a 64k-byte D-
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Cache, and a multi-way branch predictor [34], [35] that has five-cycle stalls, 214 entries in 

the branch prediction table (BPT), and 214 entries in the branch target buffer (BTB).  

Model 3 has a similar configuration to Model 2, but its branch misprediction stalls are 10 

cycles.  Figure 5.7 shows the execution time speedup of SVSS-optimized code over base 

code (without applying SVSS) on three machine models.  By using Model 1, all SVSS-

optimized programs have positive speedups that represent ideal program execution in the 

processor pipeline.  147.vortex gets the highest speedup of 14.58%, and 124.m88ksim is 

second with 10.37%.  129.compress and 130.li have moderate speedups, around 2.5%.  

However, 126.gcc and 134.perl have small speedups of 1%.  When using Model 2 and 

Model 3, all benchmarks except 147.vortex suffer from the side effect of speculative 

execution on the I-Cache, D-Cache, and multi-way branch predictor.  The increased stalls 

from the I-Cache, D-Cache, and branch predictor decrease the speedups of SVSS-

optimized code over base code from 5.25% (Model 1) to 4.10% (Model 2) and 3.67% 

(Model 3) on a harmonic average.  However, 147.vortex is the exception, which yields 

better speedups on Model 2 and Model 3 than on Model 1.  The reason is that SVSS-

optimized code has fewer branch misprediction stalls than base code does.  After 

applying SVSS, the control flow in 147.vortex is changed, so that the multi-way branch 

predictor can predict BNE branches that verify predicted values and other branches more 

accurately.  Using Model 2 and Model 3 enlarges the execution time difference between 

SVSS-optimized code and base code of 147.vortex.  126.gcc and 134.perl have negative 

speedups on Model 2 and Model 3.  Because their ideal speedups are small on Model 1, 

the increased I-Cache, D-Cache, branch misprediction stalls counteract the benefits from 

the SVSS optimization. 
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The Execution Time Speedup of SVSS-Optimized Code over Base 
Code
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Figure 5.7 The execution time speedup of SVSS-optimized code using software static 
stride value predictors over base code.  (Note that the speedups of 126.gcc are 

slightly less than 1.00 on Models 2 and 3.) 

 

5.4 Summary 

In this chapter, we propose software-only value speculation scheduling (SVSS) to 

improve the performance of microprocessors by utilizing software static stride value 

predictors.  SVSS has the advantage of being applicable to existing microprocessors 

without adding new hardware value predictors and modifying processor pipelines.  From 

the experimental results, the prediction accuracy using the software static stride value 

predictor is comparable to that using the hardware stride two-delta value predictor.  The 

benefit analysis shows that by using the software static stride value predictor, averaging 

9.43% of critical path reduction can be obtained on the 20 most heavily executed paths in 
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each SPECint95 benchmark.  The overall execution time speedup of SVSS-optimized 

code over base code on a 16-issue VLIW machine model is encouraging with up to 15%, 

and averaging 4%. 

Future work will include the design of new software value predictors to predict 

operations with different patterns other than strides.  The SVSS scheme can be 

experimented in Intel Itanium [27], [28], [31], [41] to evaluate the effectiveness of value 

speculation.  For architectures that have very few global registers available for the 

compiler usage, a new register file may be created.  Special-purpose ADD and MOVE 

operations can access the new register file to implement software static stride value 

predictors for the SVSS optimization. 
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Chapter 6    
 
Hardware-Based Value Profiling 

Program profiling [4], [7], [39] is a mechanism to collect information about a 

program.  The profile results may include execution frequencies of basic blocks, miss 

rates of the I-Cache or D-Cache, prediction accuracies of branches or operations, and the 

distribution of executed operations.  Several applications [22], [23], [39] utilize different 

kind of profile information.  For the VSS optimization [22], the compiler relies on the 

predictability of operations to make judicious decisions of selecting and breaking flow 

dependences.  To obtain the prediction accuracies of operations, the program is 

instrumented with additional code that simulates hardware value predictors.  Then, 

running the instrumented program with training inputs generates the value prediction 

accuracies of profiled operations.  The process of program profiling has the disadvantage 

of large overheads when running the instrumented program.  Also, the training inputs for 

program profiling must be the representative to other runs, such that the profile 

information may be useful for program optimization. 
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Compared to program profiling, hardware-based profiling [37], [40] is a better 

technique to gather information at run-time with fewer overheads and more accuracies to 

actual usage of a program.  In this chapter, we adopt the same concept of hardware-based 

profiling [37], [40] and propose hardware-based value profiling to recognize highly 

predictable operations at run-time.  An augmented value predictor that has between 16 

and 256 entries is experimented to profile operations at the retirement stage.  Each entry 

in the value predictor contains a tag and a saturating profile counter.  The tag stores the 

instruction pointer (PC) or the compiler-assigned index of the operation.  The profile 

counter indicates the predictability of operations.  Upon context-switches or interrupts, 

the tags with the maximum saturating counter values are stored to memory, so only 

highly predictable operations are recorded.  From the experimental results, hardware-

based value profiling can accurately identify highly predictable operations.  Using the 

value predictor with 256 entries gathers 25% of static profiled operations that account for 

43% of dynamic profiled operations.  The collected operations have very high prediction 

accuracies of 94% that can be utilized by the VSS optimization. 

The remainder of this chapter is organized as follows.  Section 6.1 measures the 

profile shifts under different input sets to investigate if the profile information remains 

invariant.  The profile invariance is important to all profile-driven optimizations.  Section 

6.2 proposes a scheme of hardware-based value profiling.  Section 6.3 presents 

experimental results of hardware-based value profiling.  Section 6.4 concludes this 

chapter. 
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6.1 Profile Invariance 

The profile results are useful for program optimization only if the collected 

information remains invariant among different runs.  The invariant characteristics are 

important to design hardware-based value profiling as well.  In this section, the 

predictability of operations is profiled using different inputs to measure the profile shift.  

The results of the profile shift will guide us to design a scheme of hardware-based value 

profiling. 

In the experiments, the SPECint95 benchmark suite was used with three different 

input sets, train, test, and ref, which are shown in Tables 6.1, 6.2, and 6.3.  All integer-

register-writing operations in each SPECint95 program were profiled using a hybrid 

value predictor [13], [22].  The hybrid value predictor [13], [22] contains stride [4], [10], 

[13] and context-based value predictors [10], [11].  The value prediction table size equals 

the number of all integer-register-writing operations in each SPECint95 program.  For the 

stride value predictor, each entry records the last actual result and the stride of the last 

two values.  Adding the last value and the stride generates a prediction.  For the context-

based value predictor, the entry in the first level table records one actual result that 

indexes a local second level table with 16 entries to generate a prediction.  The hybrid 

predictor selects a prediction between the stride value predictor and the context-based 

value predictor based on counters associated with each value predictor.  When the value 

predictor generates a correct prediction, the counter increases by three, and up to twelve.  

In the case of value misprediction, the counter decreases by one, and down to zero. 
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Table 6.1 The train input set for the SPECint95 benchmarks. 

SPECint95 Train Inputs 

099.go go 50 9 2stone9.in 

124.m88ksim m88ksim -c < ctl.raw 

126.gcc gcc -quiet -funroll-loops -fforce-mem -fcse-follow-jumps -fcse-skip-blocks -

fexpensive-optimizations -fstrength-reduce -fpeephole -fschedule-insns -

finline-functions -fschedule-insns2 -O amptjp.i -o amptjp.s 

129.compress compress95 < test.in 

130.li li train.lsp 

132.ijpeg ijpeg -image_file vigo.ppm -compression.quality 90 -

compression.optimize_coding 0 -compression.smoothing_factor 90 -

difference.image 1 -difference.x_stride 10 -difference.y_stride 10 -verbose 1 -

GO.findoptcomp > vigo.out 

134.perl perl jumble.pl < jumble.in 

147.vortex vortex vortex.raw 

 

 

Table 6.2 The test input set for the SPECint95 benchmarks. 

SPECint95 Test Inputs 

099.go go 40 19 null.in 

124.m88ksim m88ksim -c < ctl.raw 

126.gcc gcc -quiet -funroll-loops -fforce-mem -fcse-follow-jumps -fcse-skip-blocks -

fexpensive-optimizations -fstrength-reduce -fpeephole -fschedule-insns -

finline-functions -fschedule-insns2 -O cccp.i -o cccp.s 

129.compress compress95 < test.in 

130.li li test.lsp 

132.ijpeg ijpeg -image_file specmun.ppm -compression.quality 90 -

compression.optimize_coding 0 -compression.smoothing_factor 90 -

difference.image 1 -difference.x_stride 10 -difference.y_stride 10 -verbose 1 -

GO.findoptcomp > specmun.out 

134.perl perl primes.pl < primes.in 

147.vortex vortex vortex.raw 
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Table 6.3 The ref input set for the SPECint95 benchmarks. 

SPECint95 Ref Inputs 

099.go go 50 21 9stone21.in 

124.m88ksim m88ksim -c < ctl.raw 

126.gcc gcc -quiet -funroll-loops -fforce-mem -fcse-follow-jumps -fcse-skip-blocks -

fexpensive-optimizations -fstrength-reduce -fpeephole -fschedule-insns -

finline-functions -fschedule-insns2 -O 2stmt.i -o 2stmt.s 

129.compress compress95 < bigtest.in 

130.li li *.lsp 

132.ijpeg ijpeg -image_file penguin.ppm -compression.quality 90 -

compression.optimize_coding 0 -compression.smoothing_factor 90 -

difference.image 1 -difference.x_stride 10 -difference.y_stride 10 -verbose 1 -

GO.findoptcomp > penguin.out 

134.perl perl primes.pl < primes.in 

147.vortex vortex vortex.raw 

 

 

Table 6.4 Statistics of total static and dynamic operations in the SPECint95 
benchmarks using train, test and ref input sets. 

Input Sets Train Test Ref 

# Static Dynamic Static Dynamic Static Dynamic 

099.go 28,189 297,736,250 33,056 9,122,826,104 32,723 18,617,385,077 

124.m88ksim 3,682 72,999,794 4,362 274,921,513 5,537 41,943,677,738 

126.gcc 76,174 625,895,979 75,280 616,745,988 70,883 272,487,688 

129.compress 543 25,210,466 485 2,778,460 632 29,861,979,006 

130.li 1,677 106,801,597 1,584 588,167,531 2,342 34,095,697,502 

132.ijpeg 6,866 1,193,881,971 6,771 436,352,849 6,798 24,697,603,777 

134.perl 7,098 939,198,744 5,219 4,503,008 5,225 8,089,016,397 

147.vortex 33,067 1,414,769,366 33,172 5,116,326,427 33,132 43,854,292,815 

Average 19,662 584,561,771 19,991 2,020,327,735 19,659 25,179,017,500 

 

After program profiling, the statistics of operations using train, test, and ref input 

sets are shown in Table 6.4.  Each input set contains two columns, static and dynamic.  
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The number in the static column indicates the number of static operations that are 

executed, and the number of static operations multiplying the execution frequency 

generates the number in the dynamic column.  For all three input sets, the average 

numbers of static operations are close, 19,662 (train), 19,991 (test), and 19,659 (ref).  

However, the average numbers of dynamic operations are very different in three input 

sets.  The train input set has the fewest dynamic operations of 584 million.  The test input 

set contains 2 billion dynamic operations, and the ref input set has the most dynamic 

operations of 25 billion. 

Based on the profile results of value prediction accuracies by running the train 

input set, the profile shift against the test input set is presented in Figures 6.1 and 6.2, and 

the profile shift against the ref input set is presented in Figures 6.3, and 6.4.  In Figure 

6.1, the value prediction accuracies of all profiled operations that appear both in the train 

and test input sets are compared.  In Figure 6.2, only operations that have prediction 

accuracies higher than 90% in the train input set are further considered to be compared 

with operations in the test input set.  The profile shift is calculated as the value prediction 

accuracy difference of operations between two different input sets.  Figures 6.1 and 6.2 

show the distribution of the value prediction accuracy differences between the train and 

test input sets.  In Figure 6.1, averaging 80% of all profiled operations have value 

prediction accuracy differences less than 10%.  In Figure 6.2, averaging 95% of 

predictable operations have value prediction accuracy differences less than 10%.  This 

shows that under different input sets, highly predictable operations are more invariant 

than all operations are. 
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Profile Shift between Train and Test Input Sets for All Operations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

09
9.g

o

12
4.m

88
ks

im

12
6.g

cc

12
9.c

om
pre

ss

13
0.l

i

13
2.i

jp
eg

13
4.p

er
l

14
7.v

orte
x

Arit
hm

et
ic

 M
ea

n

SPECint95

P
er

ce
n

ta
g

e

0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80% 80%-90% 90%-100%

 

Figure 6.1 Profile shift between train and test input sets for all integer operations. 
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Figure 6.2 Profile shift between train and test input sets for predictable integer 
operations whose prediction accuracies are higher than 90%. 
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Profile Shift between Train and Ref Input Sets for All Operations
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Figure 6.3 Profile shift between train and ref input sets for all integer operations. 
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Figure 6.4 Profile shift between train and ref input sets for predictable integer 
operations whose prediction accuracies are higher than 90%. 
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Comparing the benchmarks in Figure 6.2, 132.ijpeg and 147.vortex are the most 

invariant programs that have almost 100% of predictable operations with value prediction 

accuracy differences less than 10%.  However, 124.m88ksim and 134.perl have 40% and 

20% of predictable operations that experience more than 10% of value prediction 

accuracy differences between the train and test input sets.  The operations with varied 

predictability may hurt the program performance, if they are selected for the VSS 

optimization. 

Figures 6.3 and 6.4 show the distribution of the value prediction accuracy 

differences between the train and ref input sets.  Figure 6.3 has the similar trend to Figure 

6.1.  Averaging 80% of static operations have value prediction accuracy differences less 

than 10%.  However, Figure 6.4 shows better profile invariance than Figure 6.2 does.  

Especially for 124.m88ksim, more than 85% of predictable operations have value 

prediction accuracy differences less than 10%.  It means that in 124.m88ksim, the 

executed operations are strongly correlated between the train and ref input sets.  From the 

results of Figure 6.4, if the ref input set is the input that the user runs, the profile 

information from running the train input set will be good feedbacks to perform the VSS 

optimization. 

From Figures 6.2 and 6.4, predictable operations are more invariant than all 

operations.  Also, from the optimization’s point of view, the highly predictable operations 

are candidates for the VSS optimization.  Therefore, a scheme of hardware-based value 

profiling is designed to identify and collect highly predictable operations. 
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6.2 Hardware-Based Value Profiling 

Based on the profile invariance of predictable operations in Section 6.2, a scheme 

of hardware-based value profiling is proposed in Figure 6.5 to collect highly predictable 

operations.  The process of hardware-based value profiling occurs at the retirement stage, 

such that it is not on the critical path of the processor pipeline.  In Figure 6.5, the scheme 

of hardware-based value profiling can be applied to different prediction mechanisms, 

e.g., last value prediction [2], [3], stride value prediction [4], [10], [13], context-based 

value prediction [10], [11], or hybrid value prediction [13], [22]. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.5 A scheme of hardware-based value profiling. 

 

In Figure 6.5, each entry of the value prediction table has two new fields: a tag 

and a saturating profile counter.  The tag records an instruction pointer (PC) or a 

Value Prediction Table         Tag            Counter 

CMP 

Instruction 
Pointer or 
Compiler-
Assigned 
Index 

Actual 
Result 

Prediction 

Prediction 
Mechanism 
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compiler-assigned index.  The counter indicates the predictability of operations.  The 

processes of hardware-based value profiling are as follows.  When an integer operation 

retires, the actual result of the operation is available to be profiled.  First, the instruction 

pointer or the compiler-assigned index selects one entry in the value predictor.  Second, 

the tag from the selected entry is compared with the current index.  If they are different, 

the counter value is read and checked against a threshold.  If the current counter value is 

greater than the threshold, the profiling process stops and nothing happens.  The 

threshold is used to favor predictable operations to occupy the selection entries longer.  

Third, if the profiling process continues and the old tag is different, the current index is 

stored to the tag field and the counter value is reset to zero.  Fourth, the value predictor 

generates a prediction based on its prediction mechanism.  Fifth, the comparison between 

the prediction and the actual result is used to update the saturating profile counter.  If the 

prediction is correct, the counter value increases by an amount, up to a maximal value.  

Otherwise, the counter value decreases by an amount, down to zero.  Also, the value 

predictor is updated by the actual result for future predictions. 

Upon context-switches or interrupts, the profile information in the value 

prediction table can be recorded.  To favor highly predictable operations and reduce the 

overhead of storing data, only the tags with the maximal saturating counter values are 

stored to the memory.  After recording the tags, all tags and counters in the value 

prediction table are reset to zero for the next profiling run.  From [37] and [40], 

hardware-based branch profiling has a slowdown of 1.02 on an average, and 1.05 at a 

worst case.  Because hardware-based value profiling uses the similar scheme to 

hardware-based branch profiling, the slowdown is expected to be small. 
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6.3 Experimental Results 

In this section, the scheme of hardware-based value profiling using the hybrid 

value predictor, which is described in Section 6.1, was experimented.  The saturating 

profile counter increased by 1, up to 15, and decreased by 5, down to 0.  The threshold 

value of the profile counter was 8.  As described in Section 6.2, if the current counter 

value is less than 8, the new profiled operation can continue the profiling process by 

replacing the tag and resetting the counter to zero.  The interrupt occurred every one 

million profiled operations to store the tag fields to the memory.  The value prediction 

table size was varied with 16, 32, 64, 128, and 256 entries.  The compiler selected 

integer-register-writing operations in the top 20 treegions [17] for hardware-based value 

profiling, and sequentially assigned the indices to the profiled operations.  For comparing 

the performance, program profiling [4], [7] using the hybrid value predictor was 

experimented.  The results of program profiling serve as the upper bound for the scheme 

of hardware-based value profiling to compare, because program profiling does not 

encounter conflicts in the simulated value prediction table. 

Table 6.5 shows the number of static operations, the number of dynamic 

operations, and the prediction accuracies using program profiling.  In Table 6.5, 126.gcc 

has the most static operations of 13,567, and 129.compress has the fewest static 

operations of 543.  The average number of static operations is 3,872.  If there are too 

many static operations to be profiled, the conflicts in the value prediction table will 

increase under the scheme of hardware-based value profiling.  The value prediction 

accuracies using the hybrid predictor vary in different benchmarks, and the average 

prediction accuracy is 61.05%. 
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Table 6.5 Statistics of profiled operations and prediction accuracies using program 
profiling. 

SPECint95 # of Static 

Operations 

# of Dynamic 

Operations 

Prediction 

Accuracies 

099.go 5,805 261,702,531  32.42% 

124.m88ksim 1,619 69,550,441 90.18% 

126.gcc 13,567 339,029,896 57.58% 

129.compress 543 25,210,466 66.54% 

130.li 784 102,766,436 50.75% 

132.ijpeg 2,394 1,127,763,347 45.14% 

134.perl 2,837 896,156,199 79.65% 

147.vortex 3,428 1,040,658,220 66.10% 

Arithmetic Mean 3,872 482,854,692 61.05% 

 

 

Table 6.6 Statistics of profiled operations whose value prediction accuracies are 
higher than 90% using program profiling. 

SPECint95 Percentage of static 

operations whose 

accuracies > 90% 

Percentage of dynamic 

operations whose accuracies 

> 90% 

099.go 18.35% 14.46% 

124.m88ksim 49.41% 80.75% 

126.gcc 39.29% 32.99% 

129.compress 63.35% 58.11% 

130.li 33.16% 26.09% 

132.ijpeg 43.94% 22.46% 

134.perl 40.85% 68.09% 

147.vortex 38.77% 55.99% 

Arithmetic Mean 40.89% 44.86% 

 

 

The percentages of static and dynamic predictable operations whose prediction 

accuracies are higher than 90% using program profiling are shown in Table 6.6.  These 
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numbers will be used to evaluate the coverage of predictable operations when using 

hardware-based value profiling.  The average percentages of static and dynamic 

predictable operations are 40.89% and 44.86%.  In Table 6.5, 124.m88ksim has the 

highest value prediction accuracy of 90.18%, so the percentage of dynamic predictable 

operations is the most among the SPECint95 benchmarks. 

Figures 6.6 and 6.7 show the percentages of static and dynamic operations that are 

selected and stored to the memory by using hardware-based value profiling with 16, 32, 

64, 128, and 256 entries in the value predictor.  For all benchmarks, the percentage of 

selected static operations increases when the number of value predictor entries increases, 

because fewer conflicts occur in the value prediction table.  When doubling the table size 

from 16 to 32, 64, 128, 256 entries, the coverage of static and dynamic predictable 

operations increases for most of the cases.  The diminishing return appears when 

doubling from 128 to 256 entries.  In 126.gcc, because 13,567 operations are selected to 

be profiled, many conflicts in the value prediction table affect the number of predictable 

operations that can be recorded by hardware-based value profiling.  In Figure 6.6, using 

the value predictor with 256 entries collects 25% of static operations on an average.  As 

shown in Table 6.6, the average percentage of static operations whose prediction 

accuracies are higher than 90% is 40%, which is 15% more than the percentage by using 

hardware-based value profiling with 256 entries.  However, in Figure 6.7, using 

hardware-based value profiling with 256 entries covers 43% of dynamic operations, 

which are very similar to the percentage of dynamic operation whose accuracies are 

higher than 90% by using program profiling that is shown in Table 6.6. 
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Static Operations Selected by Hardware-Based Value Profiling
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Figure 6.6 Statistics of static operations selected by hardware-based value profiling. 

 

Dynamic Operations Selected by Hardware-Based Value Profiling
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Figure 6.7 Statistics of dynamic operations selected by hardware-based value 
profiling. 
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Value Prediction Accuracies of Operations Selected by Hardware-
Based Value Profiling
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Figure 6.8 Value prediction accuracies of operations selected by hardware-based 
value profiling.  Some value prediction accuracies are zeros, because no operations 

are collected under these schemes. 

 

Figure 6.8 shows the value prediction accuracies of operations that are collected 

by hardware-based value profiling with 16, 32, 64, 128, and 256 entries.  Some value 

prediction accuracies are zero in Figure 6.8, because no operations are collected under 

these schemes.  Using different sizes of the value prediction table, the average value 

prediction accuracies are around or above 90%.  Profiled operations in 124.m88ksim, 

129.compress, and 147.vortex have very high prediction accuracies of 98%.  The highly 

predictable operations can be utilized by the VSS optimization.  For all benchmarks, by 

using different value prediction table sizes, the average prediction accuracies are around 

94%.  Figure 6.8 can show that hardware-based value profiling accurately collects highly 

predictable operations. 
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One application of hardware-based value profiling is to feed the collected highly 

predictable operations to perform the VSS optimization.  As described in Chapter 4, 

solving an optimal edge selection problem in a data dependence graph serves as a 

compilation phase of the benefit analysis.  For the benefit analysis, the value 

misprediction rates and branch misprediction rates are required to model the penalties for 

mispredicting operations (from Figure 3.5).  However, hardware-based value profiling 

only records the indices of profiled operations that have maximal saturating counter 

values upon context-switches or interrupts.  As shown in Figure 6.9, the value 

misprediction rates and branch misprediction rates need to be synthesized for the scheme 

of hardware-based value profiling.  In Figure 6.9, the number of occurrences for each 

index is used to calculate the value misprediction rate.  The branch misprediction rate is 

set to be the same as the value misprediction rate, because highly value-predictable 

operations have corresponding highly predictable BNE branches (from Figure 3.14).   

 

Value_misprediction_rate = 1 /  (15 ^ number_of_occurrences) 

Branch_misprediction_rate = Value_misprediction_rate 

Figure 6.9 The synthesized value misprediction rates and branch misprediction 
rates for the scheme of hardware-based value profiling. 

 

Based on the synthesized value misprediction rates and branch misprediction rates 

for the scheme of hardware-based value profiling with 256 entries, the VSS optimization 

was performed on all SPECint95 benchmarks except for 099.go and 132.ijpeg.  For 

comparison, the VSS optimization was also performed based on the results of program 

profiling.  Figure 6.10 shows the execution time speedup of VSS-optimized code over 
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base code using the feedbacks from program profiling and hardware-based value 

profiling.  The machine model is the same as Model 2 in Table 5.3 with the I-Cache, D-

Cache, and multi-way branch predictor with 5-cycle stalls. 

In Figure 6.10, for all benchmarks except 147.vortex, using the feedbacks from 

program profiling to perform VSS obtains larger speedups than using the synthesized 

data from hardware-based value profiling.  The differences of speedups are significant.  

The reason is that program profiling gathers precise value prediction accuracies of 

operations, so that the benefit analysis can accurately find an optimal set of dependences 

to be broken via VSS.  However, 147.vortex, which contains many very highly 

predictable operations, is the exception.  Because the synthesized data for 147.vortex 

indicates that many operations are highly predictable, the VSS optimization is performed 

more aggressively under the scheme of hardware-based value profiling than under 

program profiling, and the resultant speedup is higher.  In 126.gcc and 134.perl, the 

speedups are negative when using the feedbacks from hardware-based value profiling, 

because too many candidates are selected for the VSS optimization and resultant 

penalties for value-speculative execution increase. 

For all benchmarks, the harmonic average speedup using program profiling is 

5.5% that is higher than 3.5% using hardware-based value profiling.  In general, using the 

feedbacks from hardware-based value profiling enables more candidates for the VSS 

optimization.  The aggressive VSS optimization hurts the performance for most of the 

benchmarks.  In future work, for the scheme of hardware-based value profiling, the 

synthesized value misprediction rates and branch misprediction rates can be adjusted to 

be higher for performing the VSS optimization conservatively. 
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Execution Time Speedup of VSS-Optimized Code over Base Code
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Figure 6.10 The execution time speedup of VSS-optimized code over base code using 
the feedbacks from program profiling and hardware-based value profiling. 

 

6.4 Summary 

In this chapter, hardware-based value profiling is proposed to reduce the overhead 

of program profiling and eliminate the need of profile training inputs.  From the 

experimental results of running different input sets for the SPECint95 benchmarks, the 

highly predictable operations are invariant and need to be collected by hardware-based 

value profiling.  The value predictor with additional tag and counter fields is proposed as 

the scheme of hardware-based value profiling.  At the retirement stage, operations access 

the value predictor and update the tag and counter fields.  Upon context-switches or 

interrupts, the tags with the maximal saturating counter values are stored to the memory 
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for recording predictable operations.  In the experiments, using the value predictor with 

16, 32, 64, 128, and 256 entries obtains the increasing coverage of predictable operations.  

Using the value predictor with 256 entries collects almost all dynamic predictable 

operations in a program.  Moreover, the recorded operations by hardware-based value 

profiling have very high value prediction accuracies of 94% on an average.  This shows 

that hardware-based value profiling is accurate to identify highly predictable operations.  

The VSS optimization is also experimented based on the feedbacks from hardware-based 

value profiling, and yields the speedups of up to 19% and averaging 3.5%. 
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Chapter 7    
 
Conclusions and Future work 

This thesis has proposed compiler-driven value speculation scheduling to exploit 

the predictability for the values generated by register-writing operations to improve the 

performance of microprocessors.  The value speculation scheduling (VSS) technique 

leverages advantages of both hardware schemes for value prediction and compiler 

schemes for exposing ILP.  Two new predicting and updating operations, LDPRED and 

UDPRED, are designed to be the interface between value prediction hardware and 

program code.  The VSS algorithm utilizes LDPRED and UDPRED operations to break 

critical paths in a program to shorten execution time.  Future work will include the 

investigation of new applications that utilize LDPRED and UDPRED operations to 

improve the performance.  The correlation between different operations can improve the 

prediction accuracies of operations.  The LDPRED and UDPRED operations can be re-

designed by using register values as the indices to access the value predictor.  Thus, 
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control correlation of program flow and value correlation of linked data structures can be 

captured to enhance the predictability of operations. 

To improve the techniques for value speculation, the value speculation model has 

been proposed as solving an optimal edge selection problem in a data dependence graph.    

An efficient algorithm has been designed based on three properties observed from the 

optimal edge selection problem.  The selected dependences are then exposed to the 

hardware or the compiler to obtain maximal benefits from value speculation.  In future 

work, the value speculation model can be broadened to target not only register flow 

dependences but also memory dependences between load and store operations.  The 

integrated model can serve as a compilation phase of benefit analysis to select flow 

dependences via value speculation [22] and memory dependences via data speculation 

[1], [41]. 

Without any modification to the hardware, software-only value speculation 

scheduling (SVSS) has been proposed to improve the performance of existing 

microprocessors.  Significant speedups have been shown for using the software static 

stride value predictor to optimize the SPECint95 programs.  Future work will include the 

design of new software value predictors to predict operations with different patterns, so 

that the SVSS scheme can optimize more predictable operations. 

Hardware-based value profiling has been investigated to accurately collect highly 

predictable operations at run-time for reducing the overhead of program profiling and 

eliminating the need of profile training inputs.  The VSS optimization has been 

experimented based on the feedbacks from hardware-based value profiling.  In future 

work, the results of hardware-based value profiling can assist dynamic optimization [38].  
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The utilization of hardware-based value profiling and the invocation of performing the 

VSS optimization can be integrated together to improve the performance dynamically. 

In this thesis, the VSS and SVSS schemes have been experimented on VLIW 

architectures and have showed encouraging speedups in the SPECint95 benchmarks.  

Besides statically-scheduled machines, the VSS and SVSS optimizations can be applied 

to dynamically-scheduled machines as well.  Future work will experiment VSS and 

SVSS on different architectures to investigate the effectiveness of the techniques.  

Overall, this thesis provides a promising way of applying value prediction and value 

speculation to future microprocessors. 
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