
Bipartitioning for Hybrid FPGA-Software Simulation

Ashutosh Singla Thomas M. Conte

North Carolina State University

Raleigh, North Carolina 27695-7911

P.O.Box 7911

conte@eos.ncsu.edu

Abstract

Simulation is an important step in the design cycle

of VLSI systems. The increasing size and complexity

of modern systems require simulation techniques op-

timized for time. Researchers are resorting to paral-

lel simulation to reduce simulation time. Logic parti-

tioning plays an important role in parallel simulation.

Two factors, concurrency amongst the partitions and

communication between them, determine the e�ective-

ness of partitioning. The concurrency achieved and

the communication overhead resulting from the inter-

secting signals can directly a�ect the speed-up achieved

in the simulation. Hybrid FPGA-software simulation

o�ers an alternative for increasing the speed of simu-

lation. In addition to above factors, size and cost of

FPGA also determine the partitioning technique for

FPGA based emulation. This paper addresses the is-

sues involved in hybrid FPGA-software simulation and

presents a new partitioning scheme. With our ap-

proach, communication between partitions reduces to

at least 50% of that observed in the best of the other

algorithms. Also for most of the benchmarks, only

25% of the circuit elements are in the FPGA parti-

tion. Presimulation is employed as an e�ective tool to

achieve this aim.

1 Introduction

Simulation-based design veri�cation of VLSI systems
signi�cantly reduces design cost. Unfortunately, sim-
ulation is computationally expensive. The increasing
size and complexity of modern systems require fast
and e�cient simulation techniques.

Parallel and distributed simulation can achieve a
speed-up of two to three orders of magnitude. Several
software techniques have been proposed for parallel
and distributed simulation [1], [2]. Also FPGAs are
becoming popular in the emulation of large VLSI sys-

tems to reduce simulation time. But their size and
cost present a major limitation.

Hybrid FPGA-software simulation o�ers an alter-
native for reducing simulation time which overcomes
the limitations posed by FPGA based emulation. In
VLSI systems, only a fraction of the circuit is alive
most of the time. If these highly active elements can
be detected, then FPGAs can be used to implement
them. This overcomes the limitation posed by the
size of FPGA, as only a small part of circuit is highly
active. The remaining larger part can be placed in
software. The problem can be restated as minimiza-
tion of communication between these two partitions.
This paper presents a new partitioning scheme useful
for hybrid FPGA-software simulation. The following
section gives an overview of related work. The par-
titioning scheme is discussed in Section 3. Section
4 presents the experiments and the results. The last
section concludes the paper with a discussion of future
research directions.

2 Previous Work

Levendel, et al. [3] presented a partitioning algorithm
based on strings. Strings are de�ned as a set of con-
nected gates with at most one fan-out and one fan-in.
This algorithm ensures that there is at least one fan-
out of a gate in the same partition. The scheme aims
at maximizing the concurrency but without any con-
sideration of the communication between partitions.

Fan-in cone and Fan-out cone partitioning by
Smith, et al. [4] tends towards reducing communica-
tion. The Fan-in cone of a gate A is the set of all
gates which a�ect the output of gate A. The Fan-out
cone of A is set of all gates a�ected by the output of
A. In fan-in cone partitioning, �rst the fan-in cones
of each gate are found. Then, the gates driven by
primary inputs are assigned evenly to the processors.



1 6

4

2

3 5

8

7

a b

c

1 6

4

2

3 5

8

7

a b

c

d

(a) (b)

Figure 1: Fan-in Cone Partitioning

A gate is randomly selected for assignment to some
partition. The fan-in cone of this randomly selected
gate is compared with the union of the fan-in cone
of gates already placed on each partition. The parti-
tion which has the largest set in common is selected
for the gate. This process is repeated until there are
no gates remaining. The impact of the scheme is lim-
ited when load balancing is considered. As a result
of load balancing, after a processor is full, it is not
considered for further partitioning. This increases the
communication as shown later on. But load balanc-
ing is essential as the algorithm tends to put most of
the gates in one partition. Also, it is possible to �nd
partitions that have less communication as compared
to that of cone partitioning. The reason is that there
can be more than one set of partitions because of the
randomness of the algorithm. Figure 1(a) illustrates
fan-in cone partitioning resulting in a, b as commu-
nicating signals. Figure 1(b) illustrates another pos-
sible fan-in cone partitioning resulting in a, b, c, d

as communicating signals. Clearly the partitioning in
Figure 1(a) shows less communication as compared to
that in Figure 1(b).

Fiduccia and Mattheyses's [5] partitioning scheme
reduces the number of arcs(cutsize) that cross the par-
titions. An initial partition is selected and is itera-
tively modi�ed so as to reduce the cutsize. Cutsize is
the number of arcs(signals) that cross the partitions.
The algorithm moves a node(gate) at a time. The
node which causes maximum reduction in the cutsize
is moved. The problem with the algorithm is that
minimizing the cutsize does not ensure minimization
of activity between the partitions. The reason is that
actual communication between two partitions is the
sum of activities on all the signals in the cutsize. There
can be a cutsize which has more signals but with a to-
tal activity less than that found using the above algo-
rithm. The partitioning shown in Figure 2(a) can be a
result of the above algorithm. The numbers along the
circles or arrows represent weights of corresponding
nodes and arcs. The communicating signal is b with
an activity of 15. For the same circuit another parti-

tioning is shown in Figure 2(b), resulting in d and e

as communicating signals. The total activity on these
signals is 10, which is less than that on b.

1 6

4

2

3 5

8

7

20 15

15

20

5

15

8

10

10 5

5
5

d

e

10

15
b

8

1 6

4

2

3 5

8

7

20 15

15

20

5

15

8

10

10 5

5
5

d

e

10

15
b

8

(a) (b)

Figure 2: Fiduccia & Mattheyses Partitioning

3 A Hybrid FPGA-Software

Partitioning Scheme

The previous schemes su�er from the fact that the
actual communication di�ers from the number of sig-
nals crossing a partition, and the actual circuit ac-
tivity di�ers from the number of nodes in a partition.
Presimulation can be an e�ective tool to determine ac-
tual circuit behavior. Chamberlain and Henderson [6]
show that, for random input vectors, the �rst 10% of
a simulation is an excellent predictor of the evaluation
frequency for the rest of the run.

Our scheme uses presimulation in bipartitioning
a circuit for hybrid FPGA-software simulation. A
VHDL model of the circuit is used. The FPGA parti-
tion is constructed from the circuit elements which are
executed the most frequently. The remainder of the
circuit is placed in a partition that is simulated by soft-
ware. Circuit elements in the FPGA partition wait for
input signals coming from the software partition. This
communication needs to be reduced, otherwise syn-
chronization overhead can impact performance. The
aim of our approach is to bipartition the circuit so that
the communication between the two is minimized and
one partition consists of highly active elements.

3.1 Algorithm

The bipartitioning algorithm is based on a weighted
graph. Each gate is represented as a node in the graph,
and the fan-out or fan-in of each gate are shown as
arcs connecting the nodes. Weight of each node is ob-
tained by presimulation of the circuit and represents
the number of events for that node. Two thresholds,
hard-threshold and soft-threshold, are set in accor-
dance with the maximumweight of a node of the cir-
cuit. Hard-threshold is the minimumweight of a node



below which the node is not considered for the FPGA
partition. Soft-threshold is the minimum weight of a
directly connected node (via a particular node's fan-in
or fan-out) below which the node in question is placed
in the software partition (see example below). Follow-
ing steps constitute the algorithm after the graph has
been constructed:

1

62

3 7

10

10

2

4

5

9

10

11

6

6

6 6

7

6

5

8

8

5

3

5
4

3

4

8

a

b

20

20

Figure 3: BIFSS Partitioning

(1) Start from any node of the graph (we shall call
it the head node). (2) Go to step 9 if the weight of
the head is below hard-threshold. (3) Place head in
the FPGA partition. Find fan-out nodes of the head.
Select any fan-out node (we shall call this the second-
head). (4) If the weight of second-head is below soft-

threshold, then place it in the software partition and
add the interconnecting signal to the cutsize. Assign
second-head to an adjacent node. If there is no adja-
cent node, then move back to the last node which has
an adjacent node and assign that to second-head and
repeat step 4. (5) If the weight of second-head is above
soft-threshold, then place it in the FPGA partition.
Find the fan-out nodes of second-head and assign one
of these to second-head. If there are no fan-out nodes,
then move back to the last node which has an adja-
cent node and assign that to second-head. Go to step
4. Continue until there are no adjacent nodes remain-
ing. (6) Find the fan-in nodes of the head. Select any
fan-in node. (We shall call it second-head.) (7) Per-
form step 4. (8) If the weight of second-head is above
soft-threshold, then place it in the FPGA partition.
Find the fan-in nodes of second-head and assign one
of these to second-head . If there are no fan-in nodes,
then move back to the last node which has an adja-
cent node and assign that to second-head. Go to step
7. Continue until there are no adjacent nodes remain-
ing. (9) If any node remains unassigned, assign that
to head and go to step 2.

The algorithm is explained using the example in
Figure 3. Hard-threshold is 10 and soft-threshold is 6.
The numbers along the circles or the arcs represent
weights of the corresponding nodes or arcs. Following

Table 1: Benchmarks characteristics
Benchmarks

s9234 s13207 s15850 s35932 s38584
Gates 5597 7951 9772 16065 19253

Flip-
ops 211 638 534 1728 1426

Inputs 36 62 77 35 38
Outputs 39 152 150 320 304

Table 2: Number of gates in FPGA partition

Partitioning Benchmarks
algorithm s9234 s13207 s15850 s35932 s38584
Fan-in 2905 4295 5154 8897 10340

Fan-out 2905 4295 5153 8897 10340
Random 2904 4294 5153 8896 10339

Bifss 1630 254 1769 11190 5104

the above algorithm, nodes 1, 2, 5, 10 belong to FPGA
partition and the remaining belong to software parti-
tion. Cutsize consists of arcs a and b. Note that node
8 is in software partition, although it is above soft-

threshold . It is because this node is not the fan-out or
the fan-in of any node which is above hard-threshold.

4 Results

Analysis was performed on �ve ISCAS89 test cir-
cuits. A summary of the test circuits is given in Ta-
ble 1. All experiments were done on HP-9000/735
workstations. Circuits were analyzed and simulated
using the Vanilla CADTM VHDL analyzer and simu-
lator. The partitioning scheme was applied on presim-
ulation results from 2000ns of simulation time. Ran-
dom input vectors using a uniform distribution were
generated for presimulation. Hard-threshold and soft-

threshold were set to 50% and 30% of maximumweight
of a node. Table 2 and Table 3 show the number of
gates in the FPGA partition and the cutsize, respec-
tively. Results are shown for the fan-in cone parti-
tioning (fan-in), fan-out cone partitioning (fan-out),
random partitioning (random) and the bipartition-
ing (bifss) schemes. Two sets of results were obtained
each from a run of 10,000ns of simulation time. For
each set, a Poisson distributed random number gener-
ator with various seeds was used to generate input vec-
tors. Tables 4{5 show activity in FPGA partition for
10,000 ns simulation time. Tables 6{7 provide inter-
partition communication.

The results con�rm the assumptions described ear-
lier. Table 2 shows that highly active elements placed
in the FPGA partition represent a small percentage
of the total number of circuit elements. Furthermore,



Table 3: Cutsize

Partitioning Benchmarks
algorithm s9234 s13207 s15850 s35932 s38584
Fan-in 2732 4375 2648 10642 11408

Fan-out 3189 3216 5038 10740 11119

Random 3240 4622 5567 10704 11720
Bifss 885 80 803 7280 5147

Table 4: Activity in FPGA partition: Run 1

Partitioning Benchmarks
algorithm s9234 s13207 s15850 s35932 s38584
Fan-in 114370 172333 232913 844030 629577

Fan-out 117296 161597 227752 875423 619183
Random 68125 171218 233528 861957 616551

Bifss 98601 17137 155788 928275 477104

Tables 4-5 show that this small percentage of elements
has high activity. For the s15850 benchmark, 17% of
circuit elements are in FPGA partition, which shows
61% of the overall activity. Only benchmark s35932
is an exception with 62.88% of the total number of
circuit elements placed in the FPGA partition. The
reason being that the components are closely bound in
this benchmark. In the worst case, the cutsize of the
bipartitioning algorithm is 31.59% less than that from
other algorithms. Tables 6{7 further con�rm that the
connectivity resulting from the bipartitioning scheme
is at least 48% less than that from the best of the other
algorithms. The reason for this, as described earlier,
is that the cutsize or number of gates in a partition is
not proportional to the connectivity or activity in the
partition.

5 Conclusions

The hybrid FPGA-software partitioning technique
minimizes the communication between partitions
while simultaneously placing highly active elements in
one partition. Empirical results disprove the assump-
tions used by earlier partitioning schemes and demon-
strate the value of presimulation data for partitioning.

The results are based on random input vectors. It
is unknown how the results will di�er when input vec-
tors, more typical of VLSI systems, are used. Also,
the technique has yet to be applied to larger circuits.

Future work involves the study of synchronization
overhead for the hybrid FPGA-software scheme using
an Altera RIPP-10 board and FLEXlogic FPGAs.

Table 5: Activity in FPGA partition: Run 2

Partitioning Benchmarks
algorithm s9234 s13207 s15850 s35932 s38584
Fan-in 110251 172266 221481 862231 572324

Fan-out 113263 161475 216995 894720 561679

Random 65801 171175 222327 881163 558961
Bifss 95424 17400 149154 950261 440545

Table 6: Connectivity: Run 1

Partitioning Benchmarks
algorithm s9234 s13207 s15850 s35932 s38584
Fan-in 35775 49925 40339 301125 179022

Fan-out 44150 35934 67031 303232 176216
Random 45151 55784 81491 302063 186559

Bifss 10086 1437 9147 98293 89459

Acknowledgements

We want to thank Dr. Gary Beihl of AT&T GIS for providing the
Vanilla CAD

TM VHDL simulator. Thanks also to Nick Tredennick
of Altera/Tredennick, Inc. for support of our recon�gurable logic
research projects.

This research is supported by the National Science Foundation
under grant MIP-9410377 and by an equipment donation from Al-
tera.

Table 7: Connectivity: Run 2

Partitioning Benchmarks
algorithm s9234 s13207 s15850 s35932 s38584
Fan-in 34197 50286 37627 307609 157547

Fan-out 42245 35910 62911 309980 155128
Random 43164 55916 77406 308852 164423
Bifss 9490 1496 8664 92301 77636

References
[1] Fujimoto R. M., \Parallel discrete event simulation", in C.

ACM, 33(10):30-53, 1990.

[2] Misra J., \Distributed discrete event simulation", in ACM
Computing Surveys, 18(1):39-65, 1986.

[3] Levendel Y. H., Menon P. R., and Patel S. H., \Special-purpose
computer for logic simulation using distributed processing", in
Bell Syst. Tech. J., 61, 10, 2873-2909, 1982.

[4] Smith S. P., Underwood B., and Mercer M. R., \An analysis of
several approaches to circuit partitioning for parallel logic sim-
ulation", in Proceedings of the 1987 International Conference
on Computer Design, IEEE, New York, 664-667, 1987.

[5] Fiduccia C. M., and Mattheyses R. M., \A linear time heuristic
for improving network partitions", in Proceedings of the 19th
ACM/IEEE DAC, ACM, New York, 175-181, 1982.

[6] Chamberlain R. D., and Henderson C., \Evaluating the use
of presimulation in VLSI circuit partitioning", in Proceedings
of the 8th Workshop on Parallel and Distributed Simulation,
SCS, 139-146, 1994.


