
Reducing State Loss For Effective Trace Sampling of Superscalar Processors

Thomas M. Conte Mary Ann Hirsch Kishore N. Menezes
Department of Electrical and Computer Engineering

North Carolina State University
Raleigh, North Carolina 27695

fconte, mahirsch, knmenezeg@eos.ncsu.edu

Abstract

There is a wealth of technological alternatives that can
be incorporated into a processor design. These include
reservation station designs, functional unit duplication, and
processor branch handlingstrategies. The performance of a
given design is measured through the execution of applica-
tion programs and other workloads. Presently, trace-driven
simulation is the most popular method of processor perfor-
mance analysis in the development stage of system design.
Current techniques of trace-driven simulation, however, are
extremely slow and expensive. In this paper, a fast and ac-
curate method for statistical trace sampling of superscalar
processors is proposed.

1 Introduction

There is a wealth of technological alternatives that can be
incorporated into a processor design. These include reser-
vation station design, functional unit duplication, processor
branch handling strategies, and instruction fetch, issue, com-
pletion, and retirement policies. The performance of a given
design is measured through the execution of application pro-
grams and other workloads. The decision to introduce a new
technology improvement in a system depends, however, on
the relative performance increase versus the cost.

Workloads or benchmarks may be instrumented to gen-
erate traces that contain enough instruction execution in-
formation to test the performance of the proposed proces-
sor subsystem. The SPEC92 suite [5] is a set of bench-
marks that has been widely used to measure such perfor-
mance. These benchmarks execute for billions of instruc-
tions; therefore, an exhaustive search of the design space
using these workloads is time-consuming and expensive.
Statistical sampling [8],[12], has been used successfully to
alleviate these problems in cache simulations and, in re-
cent years, it has also been extended to the simulation of
processors [2],[10],[9]. In general, statistical techniques

used in experiments reduce a large data set into a smaller
representative set. The results obtained from the sampling
must be representative of the entire workload to be accurate.
The representativeness, therefore, depends on the method
of sample collection. One of the earliest studies of trace-
sampled processor simulation was done by Conte [2], which
showed that a systematic sampling method that utilized con-
tiguous traces could estimate processor performance with a
relative error of only 13% [2]. Poursepanj later success-
fully developed a performance modeling technique for the
PowerPC 603 microprocessor that employed the use of a
sample of one million instructions equally divided into 200
clusters [10]. At the same time, Lauterbach proposed an it-
erative sampling-verification-resampling technique for pro-
cessor performance simulation [9]. This sampling method
extracted 100 clusters at random intervals with each cluster
consisting of 100; 000 instructions. These selected clusters
are checked against the full trace to monitor the sample’s rep-
resentativeness of the instruction frequencies, basic-block
densities, and cache statistics. If the representativeness of
the sample does not fall within the specified criterion, more
clusters are selected. This selection process continues until
the required criterion is reached [9]. All of these previ-
ous techniques were relatively accurate but these methods
required full traces and were therefore extremely long and
costly.

In this paper, a fast and accurate method for statistical
trace-sampling for processor simulation, the state-reduction
method, is proposed. This method can be used to design
a sampling regimen without the need for full-trace simu-
lations. In order to achieve this goal, statistical metrics
are used in this technique to derive the sampling regimen
and predict the accuracy of the estimated results. Section
2 provides a discussion of statistical sampling techniques
and sample design for processor simulation. The following
section describes the state-reduction method in detail and in-
cludes a statistical evaluation of its performance. The paper
concludes with a summary of the state-reduction technique
and a discussion of future work.



2 Statistical Sampling

Sampling has been defined as the process of reducing a
large data set into a smaller representative set [1]. Sam-
pling may be broadly classified into two types: probability
sampling and non-probability sampling. Probability sam-
pling requires that samples are chosen by a randomized
mechanism which assures the selection of samples that is
independent of subjective judgments. Simple random sam-
pling is known to be one of the most accurate methods
for sampling large populations. This technique involves a
random selection of single, independent elements from the
population. However, the cost associated with this approach
makes its application infeasible in some cases. Another less
accurate, but cost-effective technique is cluster sampling.
This method collects contiguous groups of elements at ran-
dom intervals from the population. Cluster sampling is the
sampling technique commonly applied to processor simula-
tion [2].

A sampling unit is an element which has an interesting
property that should be studied. The sampling unit for a pro-
cessor is a single execution cycle of the processor pipeline.
A sample is defined as the total number of sampling units
from which the performance metric is calculated. The ac-
curacy of the sampled results, therefore, increases as the
size of the sample increases. Larger samples, however, also
increase the time and cost of simulation, thereby making the
choice of an efficient sample size critical.

A parameter is an interesting population characteristic.
The primary parameter for processor simulation is the mean
retired instructions per cycle (IPC). Consider a processor
running a benchmark which executes in n time cycles,
t; t+ 1; t+ 2; : : : ; t + n, where t + i is a single execution
cycle. For a processor, these execution cycles constitute a
complete list of the sampling units known as the total pop-
ulation. In traditional processor sampling, sampling units
of equal length are randomly selected as the entire trace is
traversed. This method does not, however, yield any savings
in simulation cost because a simulation of the full trace is re-
quired. An alternative approach, cluster sampling, extracts
subsets of the trace at random gaps during trace generation.

The sampled unit of information for processor simulation
is the number of instructions executed during a processor
simulation. The metric is measured for each execution cycle
and is called the instructions/cycle (IPC). The IPC, however,
may vary between simulation runs. This variation requires
the results to be validated. The validation of estimated IPC
is calculated as the relative error, RE(IPC) which is defined
as:

RE(IPC) =
�trueIPC � �

sample
IPC

�trueIPC

(1)

where �trueIPC is the true population mean IPC, and �
sample
IPC

is the sample mean IPC.

2.1 Sample design

Sample design involves the choice of a robust (i) sam-
ple size, (ii) cluster size and, (iii) number of clusters. The
accuracy of estimates for a particular sample design is pri-
marily affected by two kinds of bias [7]: sampling bias and
nonsampling bias.

Nonsampling bias arises when the population being sam-
pled (the study population) is different from the actual tar-
get population. Nonsampling bias in processor simulation
is primarily due to the cold-start effect. The state of a
processor is composed of many units including the reserva-
tion stations, functional unit pipelines, and branch handling
hardware. The cold start effect occurs when sampling is
employed and clusters are extracted from different locations
in the full trace. This situation then causes the states of the
units to be different from the real states produced by the full
trace simulation.

Sampling bias is measured as the difference between the
mean of the sampling distribution and the sample mean.
Clusters from different locations may be selected from sam-
ple to sample which causes the estimates to vary across
repeated simulations. Therefore, the estimates are depen-
dent on the sample design. The means of these samples
form a distribution that is known as the sampling distri-
bution. Statistical theory states that, for a well designed
sample, the mean of the sampling distribution is represen-
tative of the true mean, and, the accuracy of the estimated
mean increases as the sample size increases. In case of
cluster sampling, this sample size is defined as the prod-
uct of the number of clusters times the cluster size, yet the
only randomness in cluster sampling is due to the number of
clusters. The reduction of sampling bias in cluster sampling
requires that the design of the sample be robust and include
all factors that could increase error. Some of the methods
that have been used to overcome or reduce the total bias are
discussed in the following sections.

2.2 The Processor Model

The processor model must be considered when a sam-
pling regimen is designed. In this study, a highly-parallel
processor model is used to develop a robust nonsampling
bias reduction technique. In addition, the model is used to
test the sample design strategy. The processor model con-
sidered is a full-Tomasulo, out-of-order execution engine
that is based on a RISC design methodology. This model
assumes a perfect cache and has 7 different types of func-
tional units (see Table 1). Processor instructions are issued
at an aggressive rate of eight instructions/cycle. In addition,
this model contains multiple copies of key functional units,

2



and each of these functional units has access to an unlim-
ited supply of reservation stations. Highly-accurate branch
prediction and speculative execution are generally accepted
as essential for high superscalar performance, so a hardware
predictor with high prediction accuracy is incorporated in
this processor model. Specifically, the two-level adaptive
training branch predictor [13] is employed. This scheme
consists of a 1024-entry table known as the History Regis-
ter Table (HRT), which maintains a history of the last eight
executions of a branch. The entries in this HRT point to
locations in another 1024-entry table called the Pattern Ta-
ble (PT). A branch prediction is made using a 2-bit counter
predictor in the PT. In addition, this processor is able to use
the results of the predictor to speculatively execute beyond
three branches. In this paper, the entire branch prediction
hardware including the HRT/PT tables for this model will
be referred to as the branch history buffer (BHB).

Table 1. Processor model design parameters.

Issue rate: 8 instructions/cycle
Scheduling: Full-Tomasulo, out-of-order
Branch handling: Two-level adaptive training (“PAs”)
Branch speculation degree: 3 branches ahead
Functional unit Description Number Latency
Alu Arithmetic logic unit 4 1
Load Load 8 2
Store Store 64 1
FPAdd FP add 3 2
FPMul FP multiply 3 3
FPDiv FP divide, remainder 1 13
Branch Branch 3 1
� FPDiv is unpipelined.

Table 2. Relative error for a 10 million instruc-
tion single-cluster sampling technique.

Benchmark �trueIPC �
sample

IPC
RE(IPC)

compress 2.786 3.207 -15.11
eqntott 2.523 3.072 -21.76
espresso 2.440 2.879 -17.99
gcc 2.574 2.336 9.25
li 2.481 2.510 -1.17
sc 2.214 3.358 -51.67
doduc 3.425 3.465 -1.17
mdljsp2 2.545 1.902 25.27
ora 2.932 2.932 0.0
tomcatv 4.964 5.949 -19.84

average: 16.32%

3 Trace Sampling for Processors

Many published studies of instruction-level parallelism
calculate the IPC based on a single cluster selected from the
beginning of a benchmark’s execution. This approach has
many drawbacks. Table 2 presents the results of simula-
tions using the first 10 million instructions from the trace of
each of the benchmarks studied. In this research, the bench-
marks include all of the SPECint92 benchmarks (compress,
espresso, eqntott, gcc, li, and sc) and four of the SPECfp92
benchmarks (doduc, mdljsp2, ora, and tomcatv). Several
of these benchmarks achieve relatively accurate results with
this single cluster technique. Yet, the �sample

IPC of sc is over-
estimated in excess of 50%, and the majority of other bench-
marks experience errors in excess of 15%. These overes-
timations are due to the fact that a single cluster is rarely
representative of an entire benchmark. This single cluster
is selected at the very beginning of the trace, therefore it
may contain all of the instructions for setting up later code
execution sequences. This additional code rarely contains
instructions that are executed repeatedly (i.e. loops) or have
dependencies. The impact of this lack of dependencies
causes the estimated IPC to be higher than the real IPC.

While previous studies have tried to reduce all bias as a
whole and make a prescription for all trace-sampled proces-
sor simulation, this study separates bias into its nonsampling
and sampling components. This approach solves the statis-
tical sampling problems by analyzing the effects of both
sampling and nonsampling bias. In the first step of the sam-
pling process, clusters of instructionsare obtained at random
intervals and written to a disk file. The term cluster is used
interchangeably for the group of instructions that yields a
set of contiguous execution cycles, and for the set of execu-
tion cycles themselves. The number of execution cycles that
would be obtained on the execution of a sampled instruction
trace, N sample

E , is given by,

N
sample

E =
N cluster
I � Ncluster

�IPC
(2)

where N cluster
I is the number of instructions in a cluster,

Ncluster is the number of clusters, and �IPC is the mean
IPC. In the following sections, a detailed description of the
techniques employed for reducing sampling and nonsam-
pling bias are given. These techniques are known as the
state-reduction method.

3.1 Reduction of nonsampling bias

In the case of processor simulation, nonsampling bias is
due to any loss of state information. The state in a pro-
cessor is kept in the reservation stations, the functional unit
pipelines, and in the branch handling hardware (BHB). For
the processor model considered in this research, the largest

3



amount of state is contained in the BHB. Therefore, the
state-reduction strategy will focus on the accuracy of BHB
state.

0

5

10

15

20

25

30

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
E

(I
PC

)

Instructions in cluster

compress
eqntott

espresso
gcc

li
sc

0

5

10

15

20

25

30

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
E

(I
PC

)

Instructions in cluster

doduc
mdljsp2

ora
tomcatv

Figure 1. Relative error vs. Cluster size (fresh-
BHB, Ncluster = 2; 000)

A study of the nonsampling bias for the processor model
is shown in Figure 1. For these experiments, the number of
clusters considered is 2; 000, which is large enough that it
does not to contribute the error. The size of each cluster is
then varied from 1,000 to 10,000 instructions. Two different
state repair technique for processor sampling were studied.
In fresh-BHB, the BHB was completely flushed between
the simulation of each cluster. The experimental results
for fresh-BHB are shown in Figure 1. The relative error
is high when fresh-BHB is used. For example, it can be
as high as 27.33% for doduc, using a cluster size of 1,000
instructions. The cluster size and the RE(IPC) are inversely
related because the BHB warms up the empty buffer with the

initial part of each cluster. It is known that the execution of
branch instruction is not independent and the execution time
of a branch can vary. The fresh-BHB technique, however,
incorrectly assumes that a branch will only execute during a
given cluster (i.e. it will not execute during the beginning of
the next cluster). The stale-BHB method takes the opposite
approach. The stale-BHB technique assumes that all of the
branches that were active in the previous cluster are active in
the beginning of the correct cluster. The results for the stale-
BHB approach are presented in the Figure 2. The behavior
pattern for stale-BHB is similar to the fresh-BHB. The stale-
BHB, however, has considerably lower overall RE(IPC) for
all of the benchmarks studied.

Table 3. Dynamic branch distributions.
The E-x columns present the number of branches that occupy x percent of the

benchmark’s execution. E-100 is the total number of branches that are dynamically

executed. Branches in program is the total number of static branches in the program

text.

Branch instructions
Branches

Benchmark E-25 E-50 E-90 E-99 E-100 in program

compress 2 5 17 21 135 432
eqntott 1 2 6 34 502 1323
espresso 15 49 225 842 2838 7582
gcc 72 348 2610 6535 14382 34347
li 10 34 119 264 1058 3138
sc 2 7 52 135 1529 4634
doduc 1 7 283 468 1596 3643
mdljsp2 2 5 15 35 821 848
ora 3 6 13 24 396 1791
tomcatv 3 6 12 14 372 1318

The characteristics of the branch instructions in the
benchmarks presented in Table 3 explain much of the be-
havior seen in Figure 1. The data in Table 3 represents the
distribution of unique branch instructions during execution.
The “E-x” column presents the number of branches that oc-
cupy x percent of the benchmark’s execution. For example,
of the 1323 branches in eqntott, only 502 are actually exe-
cuted. Of these, only one branch accounts for 25% of the
execution time and two branches account for 50% of the
execution. These results show that the benchmarks exercise
only a very small number of dynamic branches for the ma-
jority of their execution. Logically, the benchmarks in this
study can be divided into three categories based on the num-
ber of branches executed and generally accepted statistical
principles. The categories are easily sampled, intermedi-
ate, and difficult to sample. The benchmarks, compress,
eqntott, ora, and tomcatv, fall into the easily sampled cat-
egory because only a relatively small number of branches
are executed. This implies that the probability for obtain-
ing a representative sampling is high. The second category,
intermediate, contains espresso, li, sc, doduc, and mdljsp2.

4



All of these benchmarks have a large number of branches
executed therefore a representative sampling is harder to
obtain. The difficult to sample category only contains gcc.
This benchmark has a very large number of branches ex-
ecuted therefore the chance of obtaining a representative
sampling with a small number of clusters is very low. The
RE(IPC) for fresh-BHB is shown in Figure 1. These results
(see Figure 1), however, do not coincide with the sampling
difficulty categories. The difficulty of sampling, in gen-
eral, is not directly correlated to the RE(IPC). The RE(IPC)
ranges from 7% to 17% for easily sampled benchmarks, yet
the RE(IPC) for immediate benchmarks ranges from 15%
to 27%. In addition, the most difficult to sample benchmark
gcc has an RE(IPC) of approximately 25%. The RE(IPC)
results for stale-BHB presented in Figure 2 show a similar
pattern. The RE(IPC) of easily sampled benchmarks range
from 2% to 7% while the RE(IPC) for intermediate bench-
marks ranges from 5% to 8%. Although in the case of the
benchmark, gcc, the RE(IPC) is 15% which is well beyond
the range of the intermediate benchmarks’ RE(IPC). The
gcc phenomenon may be accounted for by the choice of
state repair techniques.

Another classification scheme for the benchmarks studied
is based on the lifetime of branch execution. This approach
categorizes benchmarks based on the relative lifespans of
their component branches. This methodology implies that
the choice of state repair technique will have more impact on
the accuracy of performance estimates when a benchmark
has more branches that have longer overall lifetimes (i.e.
the branch’s execution occurs during more than one clus-
ter). When the results from the fresh-BHB and stale-BHB
techniques are compared, the importance of branch execu-
tion lifetime and state repair technique can be seen. If the
fresh-BHB method, all states are cleared at the beginning of
each cluster. This approach totally ignores the lifetime of
the branch. In fact, the fresh-BHB method assumes that a
branch’s lifetime will be shorter than the combined length
of a cluster and a gap. Table 3, however, indicates that the
lifetime of certain branches may be longer. The stale-BHB
approach, applies the alternative philosophy. In this tech-
nique, it is assumed that a branch that was active in the
previous cluster will be active in the current cluster (i. e. no
state loss). The experimental results indicate that the stale-
BHB approach is more accurate than the fresh-BHB method.
These results imply that very few branches in a benchmark
need to have long lifetimes in order to substantially impact
RE(IPC) if the incorrect state repair technique is selected.
For example, the benchmark, doduc, has only 0.1% of its
branches having a long execution lifetime. The use of stale-
BHB on doduc, however, can reduce the RE(IPC) from ap-
proximate 27% to less than 8%.

In the stale-BHB, the state of the BHB at the end of a
cluster was used as the state of the BHB at the beginning of

-4

-2

0

2

4

6

8

10

12

14

16

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
E

(I
PC

)

Instructions in cluster

compress
eqntott

espresso
gcc

li
sc

-4

-2

0

2

4

6

8

10

12

14

16

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
E

(I
PC

)

Instructions in cluster

doduc
mdljsp2

ora
tomcatv

Figure 2. Relative error vs. Cluster size (stale-
BHB, Ncluster = 2; 000)

5



the next cluster. This method assumed that no substantial
changes in BHB state occurred during the gap, which is
known not to be the case. In an effort to compensate for the
effects of state change during the gap, the use of a warm-up
period has been suggested [8]. During a warm-up period,
the instructions contained in a cluster are applied to the
BHB but no statistics (i.e. IPC) are calculated. In essence,
the warm-up period tries to stabilize the state of the BHB
before any calculations are performed. In this research, the
effects of a warm-up period in conjunction with the stale-
BHB technique are studied. The effects of warm-up on
RE(IPC) were studied by prepending variable numbers of
warm-up instructions to each cluster. The warm-up period
during each sample contains a fixed number of instructions.
The results from this approach are given in Figure 3 and
4. These results indicate that RE(IPC) decreases as the
amount of warm-up increases, regardless of the cluster size.
In general, the RE(IPC) stabilizes at the 7; 000 instructions
level. This phenomenon supports the conjecture that the
closer the simulated state of the BHB is to the true state
(calculated by a full trace), the more accurate the estimated
IPC will be.

In summary, reduction in nonsampling bias can be
achieved by manipulating three parameters: state repair
method, cluster size and warm-up period. According to
the experimental results, the most accurate IPC estimation
is achieved using stale-BHB, a cluster size of at least 2; 000
instructions, and a warm-up period which contains a mini-
mum of 7; 000 instructions. In addition, these small cluster
and warm-up period sizes indicate that the state-reduction
approach produces a significant reduction in simulation ex-
ecution. If this method is employed, the IPC is accurately
estimated in a fraction of the execution time required by a full
simulation. These results, however, only apply to a highly
parallel processor model that includes a large branch pre-
dictor. Current processors designs contain a smaller amount
of state information. Therefore, this sample design strat-
egy will be more robust if a current processor design is
simulated. (A discussion of sample design for an arbitrary
processor model is presented in section 4.)

3.2 Reduction in sampling bias and variability

In sampling theory, it is known that bias exists in every
sample because of the random nature of the sample. The
extent of the error caused by this bias, however, can be
predicted. The standard error of the statistic under con-
sideration is used to measure the precision of the sample
results [1]. Standard error is a measure of the expected vari-
ation between repeated sampled simulations using a particu-
lar sampling methodology. It is not cost-effective to perform
repeated sampled simulations to measure the standard error.
Sampling theory, however, allows the estimation of the stan-

-4

-2

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000

R
E

(I
PC

)

Warm-up

compress
eqntott

espresso
gcc

li
sc

-4

-2

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000

R
E

(I
PC

)

Warm-up

doduc
mdljsp2

ora
tomcatv

Figure 3. Relative error vs. Warm-up (fixed,
Ncluster = 2; 000, cluster size = 1; 000, stale-BHB).

6



-2

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000

R
E

(I
PC

)

Warm-up

compress
eqntott

espresso
gcc

li
sc

-2

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000

R
E

(I
PC

)

Warm-up

doduc
mdljsp2

ora
tomcatv

Figure 4. Relative error vs. Warm-up (fixed,
Ncluster = 2; 000, cluster size = 2,000, stale-BHB).

dard error (SIPC ) from a single simulation. The standard
deviation for a cluster sampling design is given by,

sIPC =

sPNcluster

i=1 (�iIPC � �
sample

IPC )2

(Ncluster � 1)
; (3)

where�iIPC is the mean IPC for the ith cluster in the sample.
The estimated standard error can then be calculated from the
standard deviation for the sample as,

S
IPC

=
sIPCp
Ncluster

: (4)

The estimated standard error can be used to calculate the
error bounds and confidence interval. Using the proper-
ties of the normal distribution, the 95% confidence interval
is given by �

sample
IPC � 1.96 S

IPC
, where the error bound

is 1:96S
IPC

. Moreover, for a well designed sample, with
negligible nonsampling bias, the true mean of the popula-
tion may also be expected to fall within this range. Low
standard errors imply little variation in repeated estimates
and consequently result in higher accuracy.

The relationship between sample size and standard error
is presented in Figure 5. These results indicate that the
standard error generally decreases as the number of clusters
increases. However, the data also shows that there is little
if any decrease in standard error if the number of clusters is
greater than 700. The floating-point benchmarks have larger
standard errors at a smaller number of clusters than integer
benchmarks do. By this fact, the rest of this study will set
the number of clusters to be 1; 000 for further analysis.

Table 4. Confidence interval measurements
from estimates obtained from single samples
(Ncluster = 1,000).

True mean Estimated Standard Relative
Benchmark (�true

IPC
) mean (�sample

IPC
) Error (S

IPC
) Error (RE(IPC))

compress 2.786 2.768 0.016 0.65
eqntott 2.523 2.521 0.007 0.08
espresso 2.440 2.414 0.017 1.07
gcc 2.574 2.498 0.039 2.95
li 2.481 2.488 0.012 -0.28
sc 2.214 2.220 0.009 -0.27
doduc 3.425 3.391 0.050 0.99
mdljsp2 2.545 2.551 0.035 -0.24
ora 2.932 2.919 0.003 0.44
tomcatv 4.964 4.983 0.039 -0.38

The values of S
IPC

for a sample made up of 1,000 clus-
ters are presented in Table 4. Doduc has the maximum
standard error and the largest error bounds. Its confidence
interval indicates that the mean IPC for repeated samples
should be between 3.293–3.523 (�sample

IPC � 1:96SIPC) to

7



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600 700 800 900 1000

St
an

da
rd

 e
rr

or

Number of Clusters

compress
eqntott

espresso
gcc

li
sc

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600 700 800 900 1000

St
an

da
rd

 e
rr

or

Number of Clusters

doduc
mdljsp2

ora
tomcatv

Figure 5. Standard Error vs. Number of
Clusters (Stale-BHB, Ncluster = 2000, cluster
size=2000, warm-up=8000)

obtain a 95% confidence interval. These results also show
that the �IPC for all of the benchmarks with the exception
of ora fall within the 95% confidence level. The �trueIPC for
ora is approximately 0.01% out of its 95% confidence level.
This deviation could be due to the lack of a wide varia-
tion in its sample IPC means, therefore its standard error is
relatively small error. If these samplings where repeatedly
performed, the �

sample
IPC for ora may fall within the overall

95% confidence level.
The variability of cluster means across all clusters in a

sample is presented in the Figure 6. The results show that
the cluster means vary with the number of clusters used.
The difficulty of accurately sampling a given benchmark
is inversely related to the variability of the cluster means.
Benchmarks, ora and eqntott, exhibit little variability and are
therefore conducive to accurate sampling. The benchmarks,
gcc, doduc, mdljsp2, and tomcatv, exhibit high variation in
the cluster means and are therefore difficult to sample. These
results indicate that the precision of a sampling regimen
depends upon the homogeneity of the cluster means.

In this study, the full-trace simulations were also avail-
able, thereby making it possible to test whether sample de-
sign using standard error achieves accurate results. The
estimates of �sample

IPC when compared to �trueIPC show rela-
tive errors of less than 3% for all benchmarks (see Table 4).
Furthermore, the relative error was predicted by the 95%
confidence levels. Therefore, a robust sampling regimen
can be designed without the need for full-trace simulations.
In addition, if nonsampling bias is negligible, the sampling
regimen can be designed from the data obtained solely from
a single sampled run.

4 Concluding Remarks

Trace-driven simulation is a popular approach to evaluat-
ing processor design alternatives. This evaluation, however,
traditionally involves the use of costly full trace simulations.
The need for efficient processor sampling techniques has be-
come more apparent due to the fact that the execution time
for a full continuous trace is extremely long.

In this paper, a fast and accurate processor sampling de-
sign strategy, the state-reduction method,has been presented
that does not require full trace simulation. The essential
steps to this strategy are centered around the systematic
reduction in sampling and nonsampling bias. To reduce
sampling bias, statistical sampling design techniques were
employed. The experimental results demonstrate that a reg-
imen for sampling a processor simulation can be developed
without the need for full-trace simulations. The nonsam-
pling bias is reduced by using a combination parameters
that include a state repair method, the cluster size, and a
warm-up period. The recommended steps for processor
sampling design using the state-reduction technique are:

8



compress eqntott

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000
1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000

espresso gcc

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000
1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000

li sc

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000
1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000

doduc mdljsp2

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000
1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000

ora tomcatv

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000
1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000

Figure 6. Variability of cluster means across
all clusters in the samples. X-axis is the clus-
ter number and y-axis is the mean IPC for the
cluster. Cluster size = 1000.

1. Reduce nonsampling bias: This requires the selec-
tion of a state repair mechanism, a cluster size, and a
warm-up period.

2. Determine the sample design:

(a) Select a number of clusters: Simulate using a
particular number of clusters.

(b) Determine error bounds: Estimate standard
error (Equations 3 and 4) to determine error
bounds/precisionof the results. If the error is ac-
ceptable, the experiments are completed. Oth-
erwise, increase the sample size by increasing
the number of clusters, and resimulate until the
desired precision is achieved.

The state-reduction method not only can be used for sam-
pling in processor simulation. It can also be extended to
processor emulation as developed by Sathaye [11]. Clearly,
the state-reduction technique can easily be supported by
generic processor simulation generators such as the VMV
proposed by Diep [3], [4].

Future work is needed that will incorporate the use of
static branch predictors into the warm-up period for each
cluster. This implementation would extend the Fu and Patel
prediction technique [6] for cache simulation to processor
simulation. In the current state-reduction method, the IPC is
not calculated during the initial warm-up period. The future
extension of this method, however, would calculate the IPC
during the warm-up period based on a branch instruction
path prediction. During the evaluation interval, the IPC
would still be calculated on the actual cluster instruction
information. This modified state-reduction method may
increase the accuracy of the estimated IPC without severely
degrading the speedup achieved by the original technique.

References

[1] J. C. H. McCall. Sampling and statistics handbook for re-
search. Iowa State University Press, Ames, Iowa, 1982.

[2] T. M. Conte. Systematic computer architecture prototyping.
PhD thesis, Department of Electrical and Computer Engi-
neering, University of Illinois, Urbana, Illinois, 1992.

[3] T. A. Diep. VMW: A Visualization-based Microarchitecture
Workbench. PhD thesis, Carnegie Mellon University, Pitts-
burgh, Pennsylvania, June 1995.

[4] T. A. Diep, C. Nelson, and J. P. Shen. Performance evaluation
of the powerpc 620 microarchitecture. In Proc. 22th Ann.
Int’l. Symp. Computer Architecture, pages 163–174, June
1995.

[5] K. M. Dixit. CINT92 and CFP92 benchmark descriptions.
SPEC Newsletter, 3(4), 1991. SPEC, Fairfax, VA.

[6] J. W. C. Fu and J. H. Patel. Trace driven simulation using
sampled traces. In Proc. 27th Hawaii Int’l. Conf. on System
Sciences, Maui, HI, Jan. 1994.

9



[7] G. T. Henry. Practical sampling. Sage Publications, New-
bury Park, CA, 1990.

[8] S. Laha, J. A. Patel, and R. K. Iyer. Accurate low-cost meth-
ods for performance evaluation of cache memory systems.
IEEE Trans. Comput., C-37(1):1325–1336, Feb. 1988.

[9] G. Lauterbach. Accelerating architectural simulation by par-
allel execution. In Proc. 27th Hawaii Int’l. Conf. on System
Sciences, Maui, HI, Jan. 1994.

[10] A. Poursepanj. The PowerPC performance modeling
methodology. Commun. ACM, 37(6):47–55, June 1994.

[11] S. W. Sathaye. Mime: A tool for random emulation and
feedback trace collection. Master’s thesis, Department of
Electrical and Computer Engineering, University of South
Carolina, Columbia, South Carolina, 1994.

[12] H. S. Stone. High-performance computer architecture.
Addison-Wesley, New York, NY, 1990.

[13] T. Yeh. Two-level adaptive branch prediction and instruction
fetch mechanisms for high performance superscalar proces-
sors. PhD thesis, Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI,
1993.

10


