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Abstract—We address practical limits of energy efficiency 

scaling for logic and memory. Scaling of logic will end with 

unreliable operation, making computers probabilistic as a side 

effect. The errors can be corrected or tolerated, but overhead will 

increase with further scaling. We address the tradeoff between 

scaling and error correction that yields minimum energy per 

operation, finding new error correction methods with energy 

consumption limits about 2 below current approaches. The 

maximum energy efficiency for memory depends on several other 

factors. Adiabatic and reversible methods applied to logic have 

promise, but overheads have precluded practical use. However, 

the regular array structure of memory arrays tends to reduce 

overhead and makes adiabatic memory a viable option. This 

paper reports an adiabatic memory that has been tested at about 

85 improvement over standard designs for energy efficiency. 

Combining these approaches could set energy efficiency 

expectations for processor-in-memory computing systems. 

Keywords—Moore’s Law, Shannon, Landauer, limits of 

computing, adiabatic, reversible, reversible logic, millivolt switch 

I. INTRODUCTION 

We address an apparently novel tradeoff between two well-
known issues. Semiconductor scaling is widely known to 
reduce energy consumption today, but it will eventually lead to 
a rise in errors due to insufficient energy to distinguish between 
0s and 1s. Algorithm-Based Fault Tolerance (ABFT) and error 
correction are well-known methods that allow logic and 
memory to function in the presence errors, albeit with 
progressively more overhead as the error rate rises. We discuss 
how continued scaling will initially reduce energy 
consumption, but scaling beyond an optimal point will cause 
energy to increase again due to the overhead of handling the 
errors. This paper finds two error correction methods that 
reduce minimum energy consumption for logic, yet finds a 
different approach that is more suitable to memory. 

When Moore’s Law was formulated in the 1960s [1], it 
projected practical, manufacturable semiconductor technology 
from that point in time into the future. In the same decade, 

theorists identified energy efficiency limits for computer 
technology [2] that were unimaginably far ahead of the 
technology of the day. The big gap led to 50 years of 
exponential growth. Now in the 2010s, we find the energy 

efficiency of manufactured devices being in the range of 10 to 

10,000 above the theoretical limits. 

Device size is approaching theoretical limits as well. 
However, the expected change from 2D to 3D manufacturing 
will allow module-level density to rise and further exacerbate 
energy efficiency challenges. 

Each 2 scaling generation enables new products for a few 
years in the huge global information technologies (IT) sector. 
Given the stakes, it would be useful to find the endpoint of 

scaling more accurately than just 10-10,000 beyond where 
we are now. 

The best known work on minimum dissipation is due to 
Landauer [2], who stated that the minimum energy is typically 
on the order of kT for each irreversible logic operation. The 

expression kT  410
−21

 joules at room temperature comprises 
Boltzmann’s constant k times the absolute temperature T. 
Landauer’s minimum is a very solid lower bound yet often 
misinterpreted; another paper at this conference analyzes this 
issue [3]. 

Today’s Complementary Metal-Oxide Semiconductor 
(CMOS) can never reach Landauer’s minimum, but it is 
important to know how close it can come. CMOS is a term that 
denotes both a complementary pull-up/pull-down logic circuit 
and the MOSFET transistor. The CMOS circuit design is very 
simple, but the circuit’s simplicity forces the charging and 
discharging of capacitors defining signal values directly from 
DC power supplies. The simple charging circuit limits energy 
efficiency to what is called the Landauer-Shannon limit [4] that 

is about 50 higher than Landauer’s minimum. 

However, the transistors have issues as well. Roadmaps for 
transistors project additional reduction in power supply voltage 
for a device class called millivolt switches. This phrase refers 
to devices that could operate in CMOS-like circuits below the 
limits of MOSFET devices. MOSFETs are limited to 

ln(10) kT/q  60 mV/decade sub threshold slope, which 
prevents practical operation below about 0.5 V. While a 
specific MOSFET replacement with steeper slope has not been 
selected for full-scale development, Tunnel FETs and 
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Piezotronic FETs are candidates. If scaling continues after 
these devices go into production, technology should be able to 
reach the Landauer-Shannon limit (and we argue it can go 
further). 

The theoretical minimum energy for CMOS Boolean logic 
has been studied by considering the wires between logic gates 
as communications links and applying Shannon’s 
communications theory, but we will argue this does not find 
the true minimum. Just as a cell phone picks up more and more 
static as it moves further from the transmitter tower, the 
theoretical minimum energy of a Boolean Logic gate is not a 
single number but a function of the acceptable error 
probability. The earliest analysis the authors can find [4] yields 
the familiar expression Pe = exp(−Esignal / kT)

1
. Modern 

textbooks [5, p. 595] sometimes use the asymptotically 
equivalent complementary error function (erfc). The erfc 
version appears in [6] as applicable to minimum energy for 
CMOS, however Theis and Solomon follow their analysis with 
the statement “[a]s thermal voltage fluctuations become 
significant, we must incorporate redundancy and error 
correction in the logic to keep the error rate in bounds” [6]. 

There is about a 50 “end zone” to energy scaling that this 
paper begins to address with error correction. CMOS circuits 
made of extremely good millivolt switches should be able to 
reach the Landauer-Shannon limit of Pe = exp(−Esignal / kT), but 
clever circuits will be needed to get closer to Landauer’s 
minimum of kT. The historical literature contains 
(unimplemented) examples of designs [4] [7], supporting the 
idea that such approaches are possible and we find some here.  

There are methods of correcting gate errors without 
concern to energy consumption. For example, Triple Modular 
Redundancy (TMR) [8] votes the results of three redundant 
calculations and uses the winner as the answer. This is 
effective, but more than triples the gate count and hence 
energy. Another class of techniques is called Algorithm-Based 
Fault Tolerance (ABFT) [9], which typically performs a full 
calculation and an estimate. For example, the estimate might be 
just the least significant bit of the full computation. The 
calculation is repeated if the two do not match. ABFT may 
have low overhead, but the versions in the literature are 
specific to just one algorithm rather than applying generally. 

To the knowledge of the authors, this is the first paper to 
connect the exponential error probability Pe = exp(−Esignal / kT) 
with error correction overhead. For example, cutting signal 
energy in half (Esignal’ = Esignal/2) will cut gate energy in half but 

change Pe’ = Pe. If error correction can square the error 
probability for less than a factor of two in overhead, the energy 
efficiency can rise above the Landauer-Shannon limit. 

Reversible computing [10] is a second approach to beating 
energy efficiency limits, yet it faced practical limitations in the 
past. Reversible computing can use existing MOSFET 
transistors, yet uses different circuits that recycle energy. 
Readers are referred to [11] for extensive additional details, but 
the principle for energy efficiency scaling is to recycle a rising 
fraction of the energy as the technology improves. One 

                                                           
1
 The Landauer-Shannon limit is usually written as Esignal = kT ln(1/Pe) 

generation might recycle 99% of operating energy, drawing 
only the remaining 1% from the power supply. A few 
generations later, 99.9% might be recycled with 0.1% drawn 
from the power supply. And so forth. 

There have been challenges in applying reversible 
computing to logic, but there is progress in the area including a 
paper at this conference by Snider et. al. [12]. The circuitry 
needed to recycle energy is more complicated than 
conventional Boolean logic, using more transistors in some 
approaches and using large numbers of clock signals in others. 
The cost to power a processor over its lifetime has recently 
started to exceed the purchase cost, making more complexity a 
good investment if it can lower energy consumption. 

Reversible computing principles can be applied to memory 
as well, which is being reported in this paper. Complexity has 
different meanings for memory and logic. Memories are 
divided into addressing logic and a memory storage array. 
While smaller storage cells are preferred, the user wants the 
largest possible array for a given storage cell size. This is 
because the array holds the data that is valuable to the user. As 
long as the addressing logic is small compared to the memory 
array, the user will not care about its complexity. Logic 
associated with memory addressing is a large consumer of 
energy in current computer systems, so making the addressing 
more energy efficient is a priority as long as it does not 
increase complexity very much. 

In section IV, we report on a memory using adiabatic 

principles that has been measured as reducing energy by 85 (i. 
e. recovers a fraction 84/85 of the delivered energy drawn from 
the power supply) owing to resonant energy exchange. 

II. REDUNDANT RESIDUE NUMBER SYSTEMS 

This section shows that an RRNS-based processor can 
exceed the energy efficiency predicted by the Landauer-
Shannon limit. A companion paper in these same proceedings 
[13] describes the Computationally-Redundant Energy-
Efficient Processing for Y’all (CREEPY) architecture. 
CREEPY uses a n=4 sub cores to represent ~32-bit numbers 
using a Residue Number System (RNS), with one residue per 
sub core. CREEPY also has r=2 additional redundant sub cores 
that extend the RNS into a Redundant RNS (RRNS) and allow 
detection and correction of a single logic error. The RRNS was 
developed in [14], but that paper did not consider energy 
efficiency. 

CREEPY (or any RRNS processor) can be used as a 
baseline for comparisons by ignoring both the energy 
consumption of the redundant sub cores and their ability to 
correct errors, a method developed in [15] for general circuits. 
The energy efficiency of the baseline can be improved by 
reducing Esignal and increasing the energy efficiency of the 
underlying gates up to the Landauer-Shannon limit in [4] and 
[5, p. 595], as described above. Any single error that occurs 
with probability Pe = exp(−Esignal / kT) per gate operation would 
cause a system failure. However, [6] suggests that 
incorporation of redundancy and error correction might be 
helpful to further increase energy efficiency. 



Nfn exp(−Esignal / kT) 

 n(G fn)
2
 exp(−2N/G

*
 Esignal / kT) 

Pu(Esignal) 

Pu’(Esignal’) 

CREEPY can then model redundancy and error correction 
by including the energy consumption of the redundant sub 
cores and assuming they will correct single errors. In this case, 
a system failure occurs only when two or more errors occur 
within a time window. The analysis below shows that 
redundancy and error correction can help. If Esignal is lowered 
the precise amount that keeps overall system energy unchanged 
given the additional gates, the probability of a system failure 
declines—at least in some useful operating ranges. If the 
baseline was operating at the Landauer-Shannon limit, the 
RRNS version would operate below the limit. 

Consider the baseline system where each of n residues is 
implemented by G gates, so the baseline comprises N = Gn 
gates. While the baseline does not check or correct errors, we 
will derive the error probability on batches of fn sequential 
arithmetic operations, using notation consistent with [13]. 
Since all errors will be undetected, the probability of an 
undetected error per batch as a function of Esignal is 

 Pu(Esignal) = Nfn exp(−Esignal / kT). 

Now consider the additional r redundant residues for a total 
of t = n+r residues, and an additional R = Gr gates. This RRNS 
circuit will be distinguished by primes (’) and operated with a 
signal energy Esignal’. The probability of an undetectable double 
error in a batch will be 

 Pu’(Esignal’) = ½ t(t−1) (G fn)
2
 exp(−2Esignal’ / kT), 

which are the ½ t(t−1) combinations of two residues being in 
error multiplied by the square of the probability of each residue 
being in error over the time of an entire batch. We are not 
detecting or correcting errors at this point; errors just become 
inconsistent encodings of the RRNS residues. 

Assume the single error detection and correction is 
performed once for each batch of fn operations by a circuit 
comprising C gates. We will not model the gates explicitly, so 
C will be an equivalent value. 

The two circuits will consume the same total energy if we 
set 

 Esignal’ = N / (N+R+C/fn) Esignal. 

The ratio of the two error probabilities above form a figure 
of merit M if the probabilities are computed at constant total 
energy, which can be the result of adjusting the signal energies 
of the two circuits to match as in (3) 

 M = _________. 

The figure of merit can be expressed either as a function of 
Esignal’ or Esignal. We choose Esignal. If we designate 

 = ½ t(t−1)/n as an RRNS property and G
*
 = N + R + C/fn, (4) 

becomes 

 

 

 M =___________________________. 

 

Now (5) simplifies to 

 M = 1/( Gfn) exp ((2N−G
*
)/G

*
 Esignal / kT). 

The error detection yields benefit when M is greater than 1, 
or beyond the break even point. Shifting to the inequality and 
taking the logarithm of both sides yields 

 0 < ln(1/(Gfn)) +(2N−G
*
)/G

*
 Esignal / kT, 

which can be solved for signal energy in units of kT as 

 Esignal / kT > ln(Gfn) G
*
/(2N−G

*
), or 

 Esignal’ / kT > ln(Gfn) N/(2N−G
*
). 

Let us explore the range of situations where RRNS is 
helpful in raising energy efficiency. Assume the number of 
logic gates in a residue calculation is G = 2000, a number used 
in [13]. The example number system from [14] used in [13] 

uses n=4, r=2, and therefore  = 3.75, N = Gn = 8,000, and 
R = Gr = 4,000. From an inspection of diagrams in [14], let us 
assume detection and correction is equivalent to 3 arithmetic 
operations or 12 residue operations. This implies 
C = 12G = 24,000. 

The spreadsheet in Table I shows RRNS can raise energy 
efficiency as long as the signal energies are above the break 
even point. As long as fn is more than 10 or so, the break even 
signal energies are below anything useful in a design, so the 
break even point is not an obstacle. Even though Table I 
establishes the boundary where energy efficiency rises, the 
specific numbers in Table 1 are the point where RRNS makes 
precisely no difference. 

Based on the fn = 100 reliability analysis in the companion 
paper [13], we conclude RRNS gives benefit in at least one 

TABLE I.  RRNS BREAK EVEN 

Parameters Break even

f n N R C e s ignal / kT e s ignal' / kT

7 8,000 4,000 24,000 293.45 152.16

8 8,000 4,000 24,000 165.03 88.02

9 8,000 4,000 24,000 122.32 66.72

10 8,000 4,000 24,000 101.03 56.13

11 8,000 4,000 24,000 88.30 49.81

12 8,000 4,000 24,000 79.85 45.63

25 8,000 4,000 24,000 51.76 31.95

50 8,000 4,000 24,000 45.50 29.17

100 8,000 4,000 24,000 44.04 28.78

G n r const 

2000 4 2 12 3.75



example situation. The scenario above as analyzed in [13] 
shows a sharp increase in reliability between Esignal’ = 42 and 
43 kT. Table I shows the break even point for fn = 100 to be 
Esignal’ = 28.78 kT, which is lower.  

A short discussion may be in order on how to extend the 
approach. The Shannon-Landauer “limit” has merit, yet we 
found an exploitable property. Scaling causes a linear reduction 
in energy consumption but an exponential rise in raw error rate. 
We searched for a low-overhead error-correction approach and 
checked to see if there could be a net savings in energy before 
the exponential dominated. The steepness of the exponential 
was crucial to how far we could push, e. g. we should have 
been able to push further with a gentler polynomial but a step 
function would have been impenetrable. Simply reducing the 
supply voltage to a semiconductor circuit causes it to fail 
uncontrollably, which is like a step function. Thus the onset of 
thermal noise is a special case not expected to be seen before 
the end of scaling. The authors have no idea how far this could 
go; it may be the equivalent of one semiconductor generation. 

III. TEMPORAL ERROR CORRECTION 

The authors propose a second form of error correction 
using samples collected over time, which also reduces 
minimum energy below the Landauer-Shannon limit. 
Typically, the wire from one gate’s output to another’s input is 
modeled as a communications channel. This is shown in Fig. 
1A where a wire connects a driving gate through a hypothetical 
switch to the combined capacitance C of the wire and the next 
gate’s input [6]. The capacitance is charged and then the switch 
opened. The disconnection leaves a reset noise of voltage kT/C 
on the input of the gate being analyzed, meeting the Landauer-

Shannon limit of Pe = exp(−Esignal / kT) on the gate’s output. 

Now imagine that the switch in Fig. 1A is thrown back and 
forth several times. Since the capacitance would charge to its 
proper value on the first cycle, later cycles would not consume 
additional energy. However, the analysis in [6] would be 
independently valid on each cycle, yielding the same data 
value but a different sample of the random reset noise. 
Applying error correction to multiple samples could reduce the 
error probability—or keep the error probability unchanged 
while reducing the gate energy. We show an error correction 
method below that allows more energy to be saved in the logic 
than is consumed by error correction. The switch is extraneous; 
it can be left closed all the time or replaced by a wire. 

This does not violate the communications theory analysis 
as the wire between stages will also conduct noise from the 
receiver’s gate backwards though the wire and ultimately to the 
output gate’s power supply. The equivalent circuit model is 
shown in Fig. 1B in enough detail to convey the basic idea. If 
Ron, R1, and R2 are large, it should be clear that the input of the 
gate being analyzed will have noise voltage kT/Ci. If Ron, R1, 
and R2 are small or shorts, they connect the three capacitors 
Cps, Cwire, and Ci in parallel and the noise voltage drops to kT / 

(Cps+Cwire+Ci). The R’s will never be 0 or  ohms in practice, 
but this effect seems not to have been considered before. 

This type of error correction will need to be applied to 
multiple levels of logic to amortize the overhead of the error 
correction circuit. Fig. 1C shows this method being applied to a 
field of gates in blue organized as a rectangle with m logic 
levels and n rows, each row comprising an input gate, m−2 
intermediate gates, and an output. We assume the signal from 
any given input will affect more than one output, fanning out 
by a factor F as it goes from one logic level to the next. 
Similarly, an output will be controlled by multiple inputs, with 
a fan-in factor of F at each level. Each of the n outputs will 
need to have its own error correction circuit and so we will 
consider the energy of one row at a time. Data applied to the 
inputs is transformed to output data in m time steps equal to the 
propagation delay of a gate, with no error correction between 
logic levels. 

Fig. 1C represents both the baseline and error corrected 
cases. The baseline circuit comprises only the blue graphics, 
which are operated at signal energy Esignal, using the same 
terminology as section II. The error corrected case includes the 

blue graphics operating at a reduced signal energy Esignal’ 
followed by the error correction circuitry in red operating at the 
original signal energy Esignal. We define Esignal = β Esignal’. 

The example in Fig. 1C uses majority voting over three 
samples for error correction, but the analysis below uses 

majority voting of α samples, α  3 and odd. The inputs must 
remain stable for least α steps so the outputs can be sampled at 
the end of steps m, m+1…m+α−1. The propagation delay time 
is approximately the same as the minimum time needed to get 
independent error samples. The samples could also be taken by 
using a single device with a low-pass filter (large capacitance) 
that averages the signal over multiple propagation delay times. 

Cps 

Driving gate and 
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Other gates, wire capacitance 

Gate 

being 

analyzed 
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Fig. 1. Temporal error correction 
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A. Error rate Pu of a row of the baseline circuit 

For both error rate and energy calculations, let thermal 
noise cause a gate to generate an erroneous signal with 
probability p. The signal will then propagate to the right, 
spreading to additional rows by a factor of F each time it 
moves from one layer to the next. This means the uncorrected 
error rate from the rightmost blue gate will be the probability 
of error in a given gate times number of parent gates, N, that 
fan in to an output: 

 praw(p) = p N 11 

where: 

 N = (Fm−1
+ … F2

 + F + 1) = (Fm
−1)/(F −1).  12

For the baseline error calculation with no error correction, 
p = exp(−Esignal / kT) and 

 Pu(Esignal) = N exp(−Esignal / kT)  13

B. Error rate of a row of the error-corrected circuit (Pu’) 

For the calculation with error correction, an undetected 
error results when a majority of the α samples of the blue logic 
circuitry are erroneous. However, an undetected error could 
also result from an error in the red error correction circuit itself. 
We will call this probability q. The probability of an 
undetected error is then:  
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where  x,C  is the number of ways to choose x of the α 

samples. 

The error correction circuit is shown in red in Fig. 1, 
comprises of two latches and a majority gate. Let us model the 
circuit as C gates per sample α, where the energy per gate is 

Esignal’. The probability of an error occurring in the correction 
circuit itself is: 

 kT

E

eCq

'signal
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So the undetected error rate is  
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We can find the error corrected signal energy, Esignal’, required 
to get the same error rate as the baseline circuit by setting (13) 
equal to (16): 
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Here we assumed the number of error correction gates is much 

less than the number of gates in the logic, Cα ≪N, and 

simplifed the result. 

C. Energy E’ of a row of the error corrected circuit 

To calculate the total energy used in a row of error-
corrected logic, we need to add the energy consumption of the 
baseline circuit (blue only in Fig. 1) to compute the correct 
result, E0’, the energy of the error correction circuit, EC’, and 
the energy due to errors, Ex’. 

The energy of the logic is given by the signal energy Esignal’ 
times the number of gates in a row:  

 E0’ = m Esignal’. 18

The energy for the error correction circuit is the number of 
error correction gates times βEsignal’: 

 EC
’
 = C×α××Esignal’ 19

Next, consider the energy drawn from the power supply by 
an ideal CMOS circuit due to thermal errors, Ex’ in a single 
row. Let us assume a thermal error occurs with probability p. 
Errors in gates on the left side of the network will each 
propagate to F rows as they go from layer to layer until they 
reach level m. An error takes twice the signal energy (an error 
signal and then a return signal) from the power supply at each 
level. The number of errors per logic level in one row of the 
blue gates in Fig. 1C will be: 

 p, p(F+1), p(F2
+F+1), ... p(Fm−1

+Fm−2
...1). 20

The series above can be summed and simplified, yielding 
an expression for the number of errors in the gates of Fig. 1C 
per row. 

 Nerr = p E = p [(F m
−1)/(F −1)

2
 – (m+1)/(F −1)], 21

which defines E 
as a constant related only to logical circuit 

structure. The energy due to errors is given by: 

 Ex’ = 2 α p E Esignal’ 22

where 2α originates from 2 signal transitions per error 
times α samples. Thus the total switching energy is: 



 E’= E0’+ EC’+ Ex’= (m+C×α×+2 α p E×Esignal’ (23) 

D. Energy of a row of the baseline circuit (E) 

The energy consumption of the baseline circuit (blue only in 
Fig. 1) will be the signal energy to compute the correct result, 
E0, assuming no errors plus the energy, Ex, due to errors. 
Clearly, 

 E0 = m Esignal 24

and in the baseline case, p = exp(−Esignal / kT), so 

 Ex = Esignal exp(−Esignal / kT) E 25

with the sum of equations (24) and (25) being the energy of the 
baseline, uncorrected, circuit. 

Fig. 2 plots energies for circuit representative of a 1616 
bit multiplier with three samples for error correction. The 
circuit is modeled by m=48 layers of logic with F = 32

1/m
 such 

that an error propagates to at most 32 outputs (which is all the 
outputs that exist on the multiplier). The error correction circuit 
is modeled by C=α gates. The horizontal axis is the baseline 
signal energy; an engineer would assess end-user requirements 
and pick a signal energy for an uncorrected circuit on the basis 
of perror = exp(−Esignal / kT). For example, this signal energy 
might be 60-100 kT for a supercomputer but only 40 kT for a 
consumer device. 

The top magenta (E) and dark blue (E’) curves represent 
system energy without and with error correction respectively. 
The magenta curve for E is represents the exponential 
Landauer-Shannon limit, although accounting for error 
propagation. Error correction allows signal energy to be 
reduced at the expense of overhead for the error correction 
logic. The dark blue curve (E’) shows total system energy at 
constant error rate. The blue curve is lower on the right of the 

graph, asymptotically approaching about 2:1 reduction in 
energy for the 7-input gate case. The error correction stops 
working below 15 kT or so, meaning the error-corrected circuit 
consumes more energy for the same output error rate. 

The limiting factor at low signal energy for error correction 
is illustrated by the yellow (Ex’+Ec’) curve representing energy 
consumed by the errors and error correction circuitry. The 
blue-green (Ex) curve represents the energy consumed by the 
errors themselves in the uncorrected case. The number of 
errors rises exponentially as signal energy drops. Furthermore, 
errors propagate through the circuit with fanout such that each 
error produces a large number of downstream errors in the 
circuit. Both the yellow and green curves include an 
exponential rise when moving to the left. 

We conclude that there is an opportunity to exceed the 
purported Landauer-Shannon limit. However, the upside 
potential depends on many variables. Even ideal millivolt 
switches that have no leakage will consume power due to the 
energy of creating and propagating thermal errors. This effect 
becomes dominant for logic nets operating below 20 kT in this 
example but varies based on fanout and circuit depth. 

IV. ADIABATIC CHARGE-RECYCLING MEMORY 

Aside from energy efficiency improvements resulting from 
monolithic integration of memory and logic, adiabatic charge-
recycling has been explored to further increase energy 
efficiency for matrix-vector multiplication in massively 
parallel connectionist neural computation [16]. It saves 
substantial energy by conserving charge through capacitive 
coupling, rather than destructive charge transfer. 

Here, we investigate the energy efficiency of the same 
adiabatic charge-recycling circuit when used in a memory. 
Since the proposed memory uses the same adiabatic circuit that 
was fabricated, tested, and reported as a neural network array 
processor [16], will report on its performance in the context of 

Fig. 2. Modeling of temporal error correction, =3 and 7 

A. 2 of 3 voting (=3); energy advantage ~1.6 B. 4 of 7 voting (=7); energy advantage ~2.0 
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a memory by reinterpreting past experimental results. 

Memories dissipate energy in the addressing logic, 
capacitance between row and column conductors and ground, 
and in storage devices. The approach illustrated in Fig. 3 
reduces all these energy losses by recovering energy 
recirculating between electrostatic and inductive forms in an 
LC tank circuit at its resonant oscillation frequency. 

Fig. 3A illustrates the principle using a small memory array 
with columns in green, rows in orange, and charge-injection 
device (CID) storage cells in grey rectangles. Each CID cell is 
abstracted as an open circuit for a 0 and full-charge capacitive 
coupling for a 1. The current flow path for a read cycle is 
shown in blue. Energy stored in the inductor is connected to 
one row at a time through the addressing switch. The 
remainder of the circuit is an arrangement of one or four 
capacitors depending on the state of the storage cell. The blue-
indicated elements form a tank circuit, which will oscillate at 
its resonant frequency. The principle of adiabatic resonant 
energy recovery is as follows: As long as the timing of the 
opening and closing of the addressing switch is properly 
synchronized with the oscillation, the resonant energy in the 
tank is conserved as charge is circulated, except for minor 
energy losses due to parasitic resistances. 

Output data is sensed from the columns by a charge-
sensitive amplifier. The amplifier detects a voltage change 
when the CID is in the fully charged capacitive form, but there 
is no voltage in the open circuit form. 

The CID cell is realized by two charge-coupled MOSFETs 
in series (Fig. 3B, upper). The two MOSFET gates are 
connected to the row and column conductors. Since the two 
MOSFETs are isolated from their surroundings except for 
purely capacitive output coupling, charge is mostly conserved. 
Charge in the yellow isolation area in Fig. 3B can leak out 
through the gate oxide or reverse biased diodes that may exist 
in the substrate area, but this leakage is relatively slow and can 
be addressed with DRAM-like refresh (at Hz to kHz rates). 

The CID-equivalent circuit (Fig. 3B, lower) changes from 
an open circuit to a nonlinear capacitor based on charge in the 
isolation region. With no stored charge (Q=0) both transistors 
are in a non-conductive state, and the equivalent circuit is an 

open circuit. On the other hand, a fully charged cell (Q=Qmax) 
effectively couples all its charge between the gates. 

A memory chip would have single inductor for many banks 
with one row driven in each, in which case the tank’s capacitor 
comprises total capacitance of the fully charged CID cells in all 
the selected rows at a given instant. The total capacitance and 
therefore the resonant frequency depends on the stored data. It 
is critical that the LC tank is maintained at its resonance peak 
for most efficient energy recovery. 

The adiabatic circuit described above was fabricated and 

measured [16] as a 256256 array multiplier, which would 
have similar circuit characteristics to a memory chip with 256 
banks. Fig. 4 shows the impact of the energy recycling. The 
upper red lines are without energy recycling, which makes 
them comparable to production memories. With recycling 
turned on and tuned, energy consumption shown by the blue 

curves dropped by up to 85, peaking when half the selected 
CID cells were storing 0 and the other half storing 1. 

The adiabatic resonant energy recovery principle applies 
specifically to charge-based memory storage with capacitive 
readout, as described above. It readily extends to other memory 
types where charge can be inherently conserved—however, 
emerging resistive memory technologies such as memristor 
(ReRAM), PCRAM, and MRAM crossbars are inherently 
lossy and do not permit adiabatic energy recovery. 

V. DISCUSSION 

Both error correction methods above rely on cooperation 
across multiple technology levels. Moore’s Law presupposed 
improvement only at the individual device level, assuming it 
would be a “rising tide that lifts all ships” without redesign of 
the ships. However, the error correction methods above 
recognize that the desirable reduction in size and energy of 
devices results in an undesirable increase in error rate. These 
errors cannot be corrected at the device level with increasing 
energy levels, but the aggregate result of these errors can be 
corrected at higher levels of a computer’s technology stack. 
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The RRNS example uses mathematics to allow occasional 
errors to be corrected. Temporal error correction uses more 
than one gate’s worth of energy to fix an error, but it can be 
applied to many gates at a time—leading to net advantage. 

We can construct error correctoin schemes that beat the 
Landauer-Shannon limit, but we do not know the limits of the 
approach. Some applications require extremely reliable 
computing at the user level, such as Exascale supercomputers 
that may not make a single mistake over a multi-year lifetime. 

The simple analyses in this paper suggest 2 advantage for 
supercomputers. On the other hand, users watching video on a 
smartphone are likely to tolerate a bad pixel once in a while so 
the reliability requirements are less. The energy reduction due 
to error correction will be less in this case. 

The RRNS example in section II was based on number 
system devised in 1965 for significantly different purpose. A 
separate paper in this conference details work in devising 
number systems and architectures that may perform better [13]. 
However, we do not know the potential of the approach. 

The temporal error correction in section III was susceptible 
to direct analysis. It had two energy levels: Esignal’ for the logic 
and Esignal for the correction circuitry. In the opinion of the 
authors, temporal error correction to reduce energy is unlikely 
to become a specific circuit or device. It seems more likely that 
a computerized design tool might be able to optimize a logic 
layout for low energy by applying algorithms to each gate. 

Adiabatic memory shows significant promise in an unusual 
area. The memory in today’s computers does not produce 
much heat, but there is a lot of interest in computer applications 
that use a lot of data. In conjunction with emerging 3D 
manufacture of logic or memory, it is possible that today’s low 
power single-layer memories will evolve to hundred-layer 
modules that dissipate a hundred times as much power. After a 

100 rise, memory would no longer be low power. This would 
create a demand for energy-efficient memories such as 
described. 

VI. CONCLUSIONS 

By simple arithmetic, an Exascale supercomputer needs an 
uncorrected gate-level reliability equivalent to an Esignal of 
around 60 kT to avoid silent errors over its lifetime. In this 
range, the error correction described in this paper could reduce 

overall energy by around 2, for a effective energy of 30 kT. 
Using [17] as reference, logic is heading towards an energy of, 
say, 10,000 kT per operation. Subject to evolution of transistors 
into millivolt switches (which is not assured), the remaining 

improvement would be 10,000 / 30  300. 

Reversible logic seems to be emerging as a practical option 
for continued scaling, including both reversible processors [12] 
and the discussion of reversible memory in this article. It is 
likely that the energy efficiency of memories will improve as 
Moore’s Law progresses, yet the CV

2
 energy in the 

row/column lines will limit energy efficiency. The adiabatic 

approach discussed in this paper demonstrated an 85 boost in 
a laboratory demonstration that could be further improved. The 
energy reduction from adiabatic operation would combine 
multiplicatively with the improvement due to Moore’s Law. 

More study of the limits of current technology would seem 
indicated. The semiconductor industry spends billions of 

dollars on new fab lines to get each additional 2 energy 
efficiency. Theory work on error correction appears from this 
paper seem capable of getting the same result at reduced cost.  

Continued research on millivolt switches is indicated. This 
paper shows the devices would make even more of a 
contribution than currently expected if accompanied by error 
correction. 

Memory is moving to 3D now, which has obvious benefits 
for both energy efficiency and applications that may need to 
use a lot of memory. However, device physics research would 
be needed for memory cells that avoid dissipating large 
amounts of power during reads and write—such as the open 
circuit/capacitor CID cell discussed in the paper. 
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