
ENERGY EFFICIENT ARCHITECTURES FOR IRREGULAR DATA STREAMS

A Dissertation
Presented to

The Academic Faculty

By

Sriseshan Srikanth

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology

May 2020

Copyright c© Sriseshan Srikanth 2020



ENERGY EFFICIENT ARCHITECTURES FOR IRREGULAR DATA STREAMS

Approved by:

Dr. Thomas M. Conte, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

Dr. Tushar Krishna
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Vivek Sarkar
School of Computer Science
Georgia Institute of Technology

Dr. Erik P. DeBenedictis
Zettaflops, LLC

Date Approved: March 2, 2020
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SUMMARY

For a vast majority of microprocessor history, the single thread performance of computing

systems has increased at a near-exponential rate. The rate of improvement, however, has

slowed down significantly over time. Three fundamental bottlenecks, dubbed the memory

wall, the locality wall, and the power wall, are commonly attributed as root causes to this.

The memory wall is a result of a memory access taking orders of magnitude longer than

a compute operation at the CPU. While this has been typically circumvented to a great extent

for dense data applications, thanks to caching and parallelism, applications that present a

spatio-temporal locality bottleneck still suffer from poor performance.

The locality wall is a result of a class of emerging applications that operate on sparse,

irregular streams of data that have become increasingly prevalent today. These sparse data

applications exhibit low locality of reference and low degree of reuse, therefore resulting in

low cache bandwidth utilization, or worse, low cache hit ratios (that exacerbate the problems

posed by the memory wall), thereby limiting performance.

We hit the power wall over a decade ago because successive generations of transistors

no longer consumed less power when they were made smaller. Furthermore, wires were

no longer an expendable commodity, meaning that they incurred a significant latency and

power overhead, thereby placing a limit on speculative approaches for performance. As

a result, the power wall has limited the peak performance achievable for computationally

dense applications.

This work finds that mitigating each of these three bottlenecks requires non-traditional

solutions that tackle various forms of memory access irregularities. Therefore, in this thesis,

I propose energy efficient architectures for irregular data streams.

A prime source for memory access irregularities stems from sparse data applications as

they exhibit a low locality of reference.These applications have become critical today, and

span important domains including machine learning, cybersecurity, graph analytics and high

xix



performance computing.

The first part of this thesis tackles the fundamental problem of latency of main memory

accesses of sparse data applications while also significantly reducing overheads of data

movement through the memory hierarchy, thereby improving energy efficiency. With the

help of novel representations, algorithms and near memory processing, sparse applications

are accelerated, on average, to within 8% of an idealized approach that executes the opera-

tions of the sparse kernel in zero time, while also reducing uncore energy consumption for

the kernel by over 5×.

The second part of this thesis focusses on sparse data applications that exhibit high cache

hit ratios, but suffer from low cache bandwidth utilization. Introducing accelerators that

leverage the on-chip cache subsystem enables such sparse kernels to realize performance

improvements of 2.2× while also reducing energy consumption by 9× on average.

The third and final part of this thesis focusses on dense (percentage of non-zeros close

to 100%) data applications that leverage millivolt switches to tackle the power wall. These

next generation devices are fast switching even at few tens of millivolts, but as a result, are

vulnerable to thermal noise perturbations. Energy-efficient computational error correction is

therefore needed to properly leverage these devices. A novel architecture that uses residue

codes for computational error correction is proposed, although residue codes cause memory

access irregularities. When compared with conventional architectures built using such

ultra-low-power-devices, the proposed architecture not only corrects intermittent, stochastic

bit errors in logic, but also realizes improvements of over 2× in energy delay product, on

average for computationally dense applications, in spite of the induced memory access

irregulaties.
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CHAPTER 1

INTRODUCTION

1.1 The Memory Wall

The general notion of the memory wall is that memory is slower than the CPU, and that

it scales at a slower rate when compared to the CPU. As with any system, there are two

components to determining the overall access time for any given request, and one strives to

keep both of them to a minimum:

1. Queueing delay, decided by the available bandwidth to the memory system.

2. Service delay, decided by the raw latency to perform the read/write once the request

reaches the head of the queue.

Typically, a memory system logically consists of a hierarchy of faster, higher cost per

bit, smaller memory devices and slower, lower cost per bit, larger memory devices, in that

order. For the purposes of this thesis, an SRAM cache is representative of the former fast

memory, and a DRAM main memory device is representative of the latter. Here, the term

“fast” applies to both bandwidth and latency.

For applications that have predictable memory access patterns, a variety of hardware and

software techniques have been developed such that most accesses to the memory system are

serviced by the cache, thus not hitting the memory wall.

Yet, for a variety of other applications such as those in graph analytics, high performance

scientific applications and cybersecurity algorithms, the focus has shifted away from dense

computationally intensive kernels, and towards light-weight processing of irregular data.

These hyper-sparse applications exhibit low locality of reference and a low degree of reuse

such that cache hit rate is low, thereby exposing DRAM access time onto the critical path.
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Fortunately, DRAMs have made rapid progress on bandwidth (and capacity), improving

by 20× (and 128×) respectively over the past two decades. However, DRAM latency has

reduced by only 30% [1]. As a result, in an effort to hide the service delay, the slack

in queuing delay as well as the increased relative availability of compute cores has been

exploited by programmers to parallelize such applications and maximize memory level

parallelism (MLP), even if it comes at the cost of increased movement of redundant data

across the memory hierarchy.

A recent, well-cited study of warehouse scale applications running in Google’s data-

centers reports that memory latency is more important than memory bandwidth [2]. The

key insight being, with a reduced effective service delay, the benefits of memory level

parallelism (MLP) are compounded. It has also been reported that the cost of moving data

between caches and main memory accounts for a large portion of total energy in several

application domains and is cited as the key challenge in future exascale systems, consuming

two orders of magnitude higher energy than that of a floating point operation [3].

The first part of this thesis proposes a new and promising mechanism to tackle the

fundamental main memory latency-bound inefficiencies of sparse data streams, while also

significantly reducing overheads of data movement through the memory hierarchy. This

mechanism leverages a novel DRAM aware, hierarchical two-level representation as well as

associated algorithms for operations on hyper-sparse data, which can be used in conjunction

with near memory processing.

1.2 The Locality Wall

The problem of hitting the locality wall [4] has arisen because several important applications

in the domains of graph analytics, high performance scientific computing, cybersecurity and

machine learning now exhibit low spatio-temporal locality of reference. As a result, these

sparse data applications suffer from either, (i) low cache hit ratio , or, (ii) high cache hit ratio

but low cache bandwidth utilization
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While the former issue is tackled in the first part of the thesis through memory-centric

computation (as described earlier), the second part of this thesis tackles the latter via

processor-centric acceleration of sparse data streams by automatically extracting sequential

locality through intelligent data marshaling within the on-chip cache subsystem. A combi-

nation of mechanisms presented in the first and second parts of the thesis are recommended

for sparse applications whose cache behavior is unknown.

1.3 The Power Wall

Dennard scaling [5] refers to the phenomenon of transistors retaining their power density as

they scaled down. Historically, this has been a great driver in providing near-exponential

improvements in performance of microprocessors over time. However, Dennard scaling

ended over a decade ago [6], and as a result, adding more and more transistors no longer

improved performance without also significantly increasing energy consumption. In other

words, we hit the power wall in 2005, which meant that increasing clock frequency was

no longer a technique to improve performance (Figure 1.1a). Furthermore, single core

performance plateaued as a result of the power wall although there is more instruction

level parallelism (ILP) inherent in programs, waiting to be exploited [7, 8, 9]. A sure-shot

mitigation technique is to strive to improve the fundamental single core power-performance

profile from the ground up, and the obvious benefits of doing so would be compounded in

general when extended to multiple cores and specialized accelerators. This is of particular

interest for computationally intensive dense kernels found in machine learning, signal

processing and high performance scientific applications.

Dynamic power scales proportionately with frequency and with the square of operating

voltage, therefore, lowering Vdd is more beneficial. However, Vdd does not seem to have

reduced to much below a volt for over a decade (Figure 1.1b). Although the theoretical

lower limit for Vdd for inverter functionality is 2kT
q

(or about 36mV ) [12, 13, 14], there are

challenges to operating at this level [15]. With conventional MOSFETs, reducing supply
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(a) Single core performance has plateaued since
the end of Dennard scaling [10].

(b) Supply voltage has not reduced much below 1 V [11].

Figure 1.1: Historic trends of microprocessors.

voltage below ˜0.7V results in increased switching delay, irrespective of channel length.

Coupled with their gentle subthreshold slope (> 60mV/decade), the upshot is that Vdd

reduction actually causes higher leakage energy, negating the benefits of the reduction in the

first place and furthermore forcing a significantly slower clock rate.

Theis and Solomon [16] suggest that new device concepts [17] within the purview of

two-dimensional lithography technology, such as tunneling FETs, enable reduction of the

1
2
CV 2 energy to small multiples of kT , without resulting in a significantly low switching

speed [18] when compared to MOSFETs. Similarly, research on ferroelectric transistors,

aka negative capacitance FETs (NCFETs) demonstrates a sub-60mV/dec slope as well

as a higher drive current [19, 20, 21, 22], both of which are necessary in rendering Vdd

reduction beneficial to energy reduction without significantly sacrificing performance [23],

when compared to MOSFETs.

These next generation devices are fast switching even at few tens of millivolts, but as

a result, are vulnerable to thermal noise perturbations. This translates into intermittent,

stochastic bit errors in logic. With signal energies approaching the kT noise floor, future

architectures will need to treat reliability as a first class citizen, by employing efficient

computational error correction.
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Codes based on a Redundant Residual Number System (RRNS), which represents a

number using a tuple of smaller numbers, are a promising candidate for implementing

energy-efficient computational error correction, although they result in irregular memory

accesses. The third and final part of this thesis proposes a novel architecture, which when

used atop ultra-low-power devices and residue codes, has the potential to punch through the

power wall to restart single core performance scaling via architectural advances abandoned

at the end of Dennard scaling a decade ago.

1.4 Thesis Statement

Energy efficiency and performance of data irregular applications can be improved via near

memory and near processor sparse data stream acceleration and address remapping.

1.5 Thesis Organization

Chapter 2 provides an introduction to irregular data streams that form the context and

motivation for the architectures proposed as part of this thesis.

Chapter 3 presents the first part of this thesis, which targets sparse data applications

that suffer from the phenomenon wherein main memory latency is on the critical path and

tackles the intersection of the memory wall and the locality wall. This chapter presents

solutions from DRAM-centric representations and algorithms to methods of energy-efficient

implementation. The peer-reviewed publications that validate this chapter are [24, 25, 26,

27].

Chapter 4 presents the second part of this thesis, which targets sparse data applications

that do not effectively utilize the on-chip and off-chip cache bandwidth available in modern

vector processors and tackles the locality wall. This chapter presents a programmable

accelerator that takes advantage of on-chip cache real estate to maximize cache bandwidth

utilization for sparse applications from several important domains, with minimal programmer

intervention. The peer-reviewed publication that validates this chapter is currently under
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review.

For presentation clarity, Chapters 3 and 4 are categorized as DRAM-centric for hyper-

sparse and cache-centric for moderately-sparse data applications respectively. However,

the distinction between hyper-sparse and moderately-sparse is not rigid and this thesis

recommends using a combination of these two classes of techniques.

Chapter 5 presents the third and final part of this thesis, which targets computationally

dense applications and tackles the power wall. This chapter begins with introduction of the

concepts of ultra low power device technologies, residue codes, and the general architectural

approach to designing cores that are well-suited to these unconventional paradigms. It then

addresses the most significant bottleneck that one would face when using a residue number

system based compute core, where the memory addresses generated are no longer in the

conventional weighted binary format. The peer-reviewed publications that validate this

chapter are [28, 29, 30, 31].

An overall conclusion is found in Chapter 6.
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CHAPTER 2

IRREGULAR DATA STREAMS IN MODERN APPLICATIONS

This chapter introduces the sources of irregularity in the data streams that motivate the

architectures proposed in this thesis.

2.1 Taxonomy of Irregular Data Streams

2.1.1 Inherent vs Induced

The first kind of data irregularity stems from zeros being inherent in the application. For

example, in a graph, not all vertices have edges that connect them. In general, such zeros

are omitted from representations and processing, resulting in irregularity. Such sparse

applications are particularly common in domains of graph analytics, high performance

computing and cybersecurity.

Another source of data irregularity is due to explicit modification of the original appli-

cation by some entity in the computing stack for the purposes of improved performance

and/or energy efficiency. Two such induced irregularities are of interest to this work: (i)

pruned deep neural networks, and (ii) computationally error-tolerant post-Moore processing.

The former is an emerging technique of reducing the computational intensity of machine

learning workloads by leveraging their algorithmic tolerance to ‘dropping’ weights. This

results in induced zeros, thus resulting in sparsity. The latter is a technique of attaining error

tolerance in computationally intensive applications via transformation of the address and

data to a different domain, known as the redundant residue number system, which will be

introduced in Section 2.4. Unlike the former, this class of induced-irregular accesses are an

example of irregularity that is not due to interspersed zeros.
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2.1.2 Conventional Sparse vs Post-Moore Dense

Data irregularity can also be classified as that which is due to interspersed zeros (inherent or

induced), and that which is irregular simply due to a non-obvious access pattern that lacks

spatial locality (induced, in this work), that has a bijective transformation to a pattern that

has high spatial locality.

The former category is typically known as ‘sparse’, whereas the latter is fundamentally

dense and is relevant to computationally error-tolerant post-Moore processing.

2.1.3 Hyper-Sparse vs Moderately-Sparse

In the sparse category of data-irregular applications, a classification may be made based on

the degree of sparsity, or the fraction (percentage) of non-zeros in the data stream. If the

percentage is under approximately 1%, these are known as hyper-sparse, whereas the others

are moderately-sparse. The threshold of 1% is not a rigid one. What separates hyper-sparse

applications from moderately-sparse applications is the impact of main memory latency on

the critical path. Moderately-sparse applications typically have a much higher cache locality

than hyper-sparse applications, and are therefore more tolerant to slower off-chip memories.

A dense data stream has a percentage of close to 100%.

Hyper-sparse data streams are seen typically in large scale graph analytics, high perfor-

mance computing and cybersecurity. Moderately-sparse data streams are seen in machine

learning, in addition to the domains mentioned above.

Depending on the level of sparsity, these result in significant energy consumption, due

to the following sources of overhead.

• Poor cache performance due to poor on-chip and off-chip cache bandwidth utilization.

• Poor cache performance due to poor hit ratios.

• Poor DRAM performance because of a high number of row activations and precharges

for a relatively smaller portion of useful data.
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Figure 2.1: Reduction of key-value pairs in a sparse data stream.

• Increased data movement through the memory hierarchy:

– Within a DRAM bank, due to redundant row activity.

– Within a cache structure.

– Between constituents of the cache hierarchy, the processor and DRAM, most of

which is redundant.

2.2 Sparse Reductions as a Programmable Abstraction

The utility of sparse data is well known to the community due to its prevalence in machine

learning algorithms (e.g., support vector machines (SVM) [32], text analytics [33]), in

scientific-computing applications [34] (e.g., Schur complement method in hybrid linear

solvers [35], algebraic multigrid (AMG) methods [36], finite element analysis [37], molecu-

lar dynamics [38], many-atom systems [39]), in graph analytics (e.g., breadth-first-search

(BFS) [40], PageRank [41], minimum spanning tree (MST), single source shortest path

(SSSP) [42], matching [43], contraction [44], reachability [45], clustering [46], triangle

counting [47], and cycle detection [48]), and in cybersecurity [49, 50]. Furthermore, novel

deep learning algorithms that are being proposed employ network pruning and effectively

“sparsify” [51, 52, 53, 54, 55, 56] them to reduce memory footprint as well as required

computation.

A significant and important operation for sparse data streams occurs during associative

array reduction (Figure 2.1). This is a set of associative operations performed on the values

of two/more key-value pairs that share the same key. General terms for key-value pairs are
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for n in oc:
for weight, (r, s) in nzw:
offset = f(n, c, r, s, ifm.dim)
for y in ofm.height_dim:
for x in ofm.width_dim:
ofm[n][y][x] += weight * ifm[offset]

Figure 2.2: Sparse Convolution as a sparse-matrix-dense-matrix multiplication, adapted from [58].
oc: Set of output channels where nzw: set of non-zero-weights (sparse filters of dimension R× S
each) represented in compressed sparse row (CSR) format [59]; ofm: output feature map; and, ifm:
input feature map; offset is a linear combination f of n, input channel (c), non-zero-weight index (r,
s) and the ifm dimensions.

typically kv-pairs, records, index-nonzeros (for sparse matrices) or tuples, where the key,

value and reduction operator are application dependent. Examples of these are introduced

next. A programmatic view of sparse reductions is shown in Figure 4.1.

2.2.1 Deep Learning

Deep convolutional neural networks requires a large number of parameters (AlexNet has

60 million [57], for instance). The fully-connected layers’ parameters are primarily re-

sponsible for the memory footprint of these networks. The operations due to convolution

layers’ parameters are primarily responsible for computation time. Accordingly, pruning

techniques [55, 51, 58] have been proposed with an objective of reducing memory footprint

and/or improving performance, but result in moderately sparse structures, the latter of which

is the focus of SortCache (Chapter 4).

Highly compressed convolutions, or sparse convolutions, can be viewed as a sparse-

matrix by dense-matrix multiplication (SpMDM), as shown in Figure 2.2. More

formally, such a multi-dimensional convolution can be defined as O(n, y, x) =∑C−1
c=0

∑R−1
r=0

∑S−1
s=0 W (n, c, r, s)I(c, y + r, x + s), where there are C input channels and

R × S filters. When W and I are flattened appropriately, the values at the same given (y,

x)-position of all N output channels can be computed collectively as a sparse-matrix by

dense-vector multiplication, which when applied to all output positions results in SpMDM

described above [58].
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Notice how this is similar to sparse reduction as depicted in Figures 2.1 and 4.1, where

the key is a linear combination of n, y and x, and the value is the non-zero partial product

obtained by multiplying the corresponding filter weight with the input feature map.

2.2.2 Graph Analytics

While graph analytics is a very broad domain, this work focuses on three important appli-

cations that span various instances of sparse reductions. Each of these applications can be

expressed as a generalized sparse-matrix by dense-vector multiplication (SpMV) problem

with different “multiply” (partial product generation) and “add” (reduce) operations. The

sparse matrix here is the transpose of the adjacency matrix, and the vector is an application-

dependent state vector spanning all vertices of the graph. SpMV maps directly to sparse

reductions in that the key is the output matrix index and the values are the non-zero partial

products corresponding to that matrix index.

There are two approaches to SpMV: inner-product and outer-product. While the former

is better for locality of output vector updates (“add”), the latter is better for input vector

reads (“mul”). From a graph analytics perspective, these are sparse-pull-dense-push (or

just “pull”) and dense-pull-sparse-push (or just “push”), respectively. Whether to push

or pull or employ a hybrid is an active research area [60]. Push is particularly attractive

because it reduces locality-based inefficiencies, performance-ambiguities and redundancies

in reading the input vector, especially in algorithms where not all vertices are active in a

given iteration, as is demonstrated by GraphMat [61], a well-cited software framework for

easily-programmable, matrix-based graph analytics.

The drawbacks of push are poor locality and potential synchronization costs with multiple

pushers for sparse reductions. However, hardware accelerators that explicitly manage data

(such as [62, 63, 27]) are able to overcome both of the these drawbacks, at various levels of

the memory hierarchy. Finally, these graph problems are repeated applications of SpMV,

and the reduction operators are associative. This allows for asynchronous processing of
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sparse reductions, which SortCache leverages in a manner that maximizes effective cache

bandwidth utilization. In summary, push-based SpMV is efficient in gathering the input

and offers sparse reductions as the bottleneck, making it a prime candidate for hardware

acceleration.

Breadth-First Search

BFS begins at a given source vertex and iteratively explores all vertices in its component.

From an SpMV perspective, the state vector maintains the first parent node obtained during

traversal. The vertex index of such a parent node is specified as a result of the mul operation

(assignment), and the add operation (conditional assignment) assigns the parent node to the

corresponding element in the state vector if and only if it was previously unassigned.

Single-Source Shortest Path

SSSP is an example of another iterative-search application. In addition to performing

graph traversal, it computes the minimum cumulative distance at each frontier. Formally, at

each iteration, for a vertex v, d(v) = minu∈N−(v){d(u) + w(u, v)}, where d is the current

minimum distance to a given vertex from the source vertex, w is the edge weight, and N−(v)

is the incoming neighborhood of v. From an SpMV perspective, the state vector represents

the distance to each vertex from the source. The mul operation is summation (of distance

to neighbor and edge weight), and the add operation is the minimum operator (to find the

current minimum distance at this iteration).

PageRank

PageRank computes the probability of a random walk through edges ending in a given

vertex. Formally, at each iteration i, Pi+1(v) = r + (1− r)
∑

u∈N−(v)
Pi(u)
|N+(u)| , where r is a

constant normalized randomness fraction, N−(u) and N+(u) are the incoming and outgoing

neighbors of vertex u. From an SpMV perspective, the state vector maintains the PageRank
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of each vertex. Unlike BFS and SSSP, PageRank has a consistently dense state vector. The

mul operation is division (of PageRank of incoming neighbor and its out-degree), and the

add operation is summation (over all incoming neighbors).

The equivalence between graph analytics and sparse linear algebra is well-studied [59],

and similar transformations from graph to SpMV problems can also be found in [62]. For

brevity, initial conditions, convergence criteria etc. are omitted from the above.

2.2.3 SpGEMM - High Performance Computing

Efficient generalized sparse-matrix by sparse-matrix multiplication (SpGEMM) is critical to

several HPC and graph analytics applications [64]. In a manner similar to SpMDM and

SpMV described above, SpGEMM maps directly to sparse reductions in that the key is the

output matrix index and the values are the non-zero partial products corresponding to that

matrix index.

C = A × B can be performed using row-wise (RW) or outer-product (OP). Both of

these algorithms generate a sparse set of partial products that need to be reduced (summed /

accumulated, in this case).

With RW, C is computed one row at a time by fetching one row of A and all rows of

B in a row-wise manner such that Ci,: =
∑

k Ai,k ×Bk,:. As a result, all partial products

generated in this manner prior to reduction (accumulation) are confined to a single output

row of C.

With OP, the kth column of A is multiplied by the kth row of B to generate the kth

partial product matrix. Reduction of all such partial product matrices results in the final

output matrix such that C =
∑

k C
k =

∑
k A:,k ×Bk,:.

Observe that OP fetches the input exactly once but generates a large space of temporaries

(partial products), whereas RW fetches the input several times although it enables caching

of temporaries. It can be theoretically shown that OP fetches a factor of N fewer inputs
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Table 2.1: Summary of moderately-sparse workloads evaluated. The number of sparse reductions
refer to the number of input records presented to SortCache (Chapter 4). The percentage of non-zeros
refers to the ratio of non-zero elements in the corresponding input matrix. The Amdahl’s percentage
refers to the contribution of sparse reductions to application overall runtime, excluding I/O.

Name Application Domain Num Sparse Reductions % non-zeros Amdahl’s %

conv2

Machine Learning

8.2 G 14.4 55%
conv3 Sparse 1.7 G 6.9 74%
conv4 Convolution 1.2 G 8.2 61%
conv5 1.2 G 11.5 75%

2cubes sphere Electromagnetics 1.5 M, 3.0 M, 49.5 M 6.6, 3.4, 0.2% 78, 74, 49%
ca-CondMat Collaboration N/W 0.2 M, 0.2 M, 7.5 M 11.7, 9.2, 0.3% 71, 80, 64%
email-Enron BFS, Email N/W 0.4 M, 0.7 M, 16.5 M 9.3, 4.9, 0.2% 67, 81, 53%

m133-b3 SSSP, Combinatorics 1.6 M, 20.5 M, 48.01 M 12.5, 1.0, 0.4% 86, 77, 53%
mario002 PageRank 2D/3D Problem 1.9 M, 4.4 M, 57.9 M 20.9, 8.8, 0.7% 65, 61, 57%

p2p-Gnutella31 Peer N/W 0.3 M, 0.5 M, 11.5 M 21.2, 13.5, 0.5% 65, 90, 66%
patents main US Patent Citations 1.1 M, 1.7 M, 46.0 M 20.8, 13.8, 0.5% 75, 72, 60%

TSOPF RS b39 c7 Power N/W 0.5 M, 0.9 M, 17.1 M 3.0, 1.6, 0.1% 70, 51, 51%
wiki-Vote Wiki Votes N/W 0.2 M, 0.4 M, 8.1 M 3.5, 1.8, 0.1% 51, 69, 51%

CAG mat364

SpGEMM

Combinatorics 586 K 10.2% 72%
ex2 Fluid Dynamics 464 K 13.8% 68%

filter2D Model Reduction 23 K 0.4% 67%
Journals Undirected Graph 203 K 78.5% 66%

LeGresley 4908 Power N/W 237 K 0.1% 75%
mhda416 Electromagnetics 188 K 5% 63%

qc324 Electromagnetics 388 K 25.5% 66%
rotor2 Structural 85 K 1.7% 68%

Si2 Quantum Chemistry 113 K 3% 76%
Trefethen 700 Combinatorics 63 K 2.6% 74%

west0381 Chemical Process Sim 12 K 1.5% 75%

than RW assuming uniform random matrices. When these are simulated with real input

considered in this work, 30000× fewer input accesses are seen with OP. This insight is also

demonstrated by [65]. Given its higher ops per byte fetched, OP is chosen as the choice of

implementation.

2.2.4 Firehose - Cybersecurity

Firehose [49] is a collection of open-source stream processing benchmarks designed to rep-

resent cyber-security applications. It models a variety of sparse network event distributions

and their subsequent (soft) real-time analysis, requiring incremental updates to sparse data.

It consists of three stream generator algorithms as its front-end, namely power law, active

set and two-level, to simulate a variety of network traffic. As with the various classes of

workloads described above, each generator produces a stream of key-value pairs. Here,

key is a proxy for an IPv6 address and value is a counter (+bias bits) associated with each

key. The goal of the benchmark suite is to track the number of identical keys received, and
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Table 2.2: Hyper-sparse input and application properties. nnzstream denotes the number of non-de-
duplicated kv-pairs in the input stream, out of which %repeated of the pairs have identical keys
whose values have to be reduced. The Amdahl’s fraction is calculated using a scalar binary tree
based reducer (described in Section 2.3.1), and indicates a high relative importance from accelerating
reduction (compute operations and associated memory reads/writes). Finally, all workloads, with the
exception of pl, exhibit low locality of reference in their streams. The pl stream has a high degree of
reuse owing to the fact that it was generated using a relatively low range of static keys (100,000) by
default. Therefore, this work reports results for pl, but omits them from averages.

Application Input Domain nnzstream
% repeated Amdahl’s LLC Miss

keys fraction Ratio of kernel

SpGEMM

2cubes sphere (2cu) Electromagnetics 6.3 M 50 0.8 0.24
belgium osm (bel) Road Networks EU 1.5 M < 1 0.5 0.49
ca-CondMat (caC) Undirected Graph 700 K 28 0.9 0.36

mario002 (mar) 2D/3D Problem 2.7 M 22 0.8 0.58
netherlands osm (net) Road Networks EU 2 M < 1 0.5 0.57
p2p-Gnutella31 (p2p) Directed Graph 500 K < 1 0.7 0.45

patents main (pat) Wt. Directed Graph 2.6 M 12 0.8 0.56
roadNet-CA (roa) Road Networks US 3 M 1.5 0.6 0.55

Firehose
Power Law (pl)

Cyber Security 500K/1M/5M
88/91/96 n/a 0.01

Active Set (as) 5/8/17 n/a 0.33/0.41/0.54
Two Level (tl) 28/30/31 n/a 0.29/0.38/0.53
* The Amdahl’s fraction for Firehose is not shown because the kernel is the application.

whenever the number of identical keys exceeds a certain threshold, the key is flagged (and

the bias bits associated with such keys are then tested against the ground-truth bias bits

included in the input).

As can be expected of anomalous network events, these three generators are designed to

be unpredictable and to have a varied dynamic range. Therefore, the incoming key-value

stream is sparse and anomaly detection can be performed by applying a reduction (saturating

increment) operator on elements with identical keys.

Tables 2.1 and 2.2 summarizes several key characteristics of the workloads evaluated.

Most notable is the relatively high Amdahl’s percentage of sparse reductions across multiple

domains and levels of sparsity.

2.3 Limitations of Prior Work on Sparse Reductions

The section summarizes prior work on software-based and hardware-based acceleration

of sparse reductions. The techniques proposed in Chapters 3 and 4 of this thesis are

demonstrably superior to, or are complementary and beneficial when used in conjunction
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with these approaches.

Recall that sparse reductions are a combination of three components: sparse gather from

a given key, application of reduction operation to the value associated with that key, sparse

scatter to the key.

2.3.1 Software Reducers

Most of prior work on software sparse reductions are scalar word accesses. Fundamentally,

these suffer from redundant data movement through the memory hierarchy as memory arrays

perform best only when there is sequential locality in the access stream. Unfortunately,

sparse reductions possess such sequential locality if and only if the algorithm is modified to

generate sparse reductions in-order. This is not possible in several classes of applications

such as dynamic/streaming graphs and Firehose. In other cases, such modification introduces

inefficiencies into the generators, as evidenced by the row-wise vs outer-product discussion

above.

Conventional Sparse Representations

There are several sparse representations that are widely used today [59, 66, 67, 68, 69]:

1. Implicit. An array-based representation of sparse data is when the key is not explicitly

stored, but is implicitly inferred from the offset from the base array address. However,

the downside is that zeros have to explicitly allocated memory, thus resulting in

significant and redundant storage (footprint) overhead. Furthermore, reductions on

the array result not only in redundant data movement of non-zeros, but that of the

zeros as well. Therefore, such an implicit representation is seldom used, unless the

workload is known to be dense or likely to be mostly-dense.

2. Coordinate - COO. To avoid the performance, energy and storage overheads of stor-

ing zeros in sparse data, a coordinate system has been proposed. In addition to storing
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the non-zero values, their corresponding indices (keys) are also stored. The example

used above to introduce sparse reductions in Figure 2.1 uses this representation. The

kv-pairs are typically stringed together either as a linked-list or as a pair of vectors

(one for the key and one for the value). Furthermore, these representations can be

sorted by key, or remain unsorted, resulting in ordered coordinate, and unordered

coordinate representations. First, ordered, vector-based representations allow for

rapid lookup (sparse gather), but their update performance (sparse scatter) suffers if

insertions have to be made into the middle of the vectors. Insertion into the middle of

vectors causes significant data movement as all the kv-pairs that occur at a later point

in space of the insertion point have to be shifted. Second, ordered, list-based repre-

sentations allow for equally fast sparse gather or scatter (even if insertions have to be

made), however, performance degrades as the distance from the head node increases.

Finally, unordered coordinate representations allow for constant time insertions, but

both sparse gather and scatter suffer.

3. Compressed - CSR/CSC/DCSR/DCSC. The memory footprint of ordered-

coordinate representations can be potentially reduced (while also resulting in reduced

data movement) if a contiguous set of kv-pairs share the same key, or share the same

portion of the key. For example, if the keys represent a two dimensional matrix index,

then all the non-zeros of the same row need not all repeat representing the row index.

The most common implementation of this compression deploys 3 vectors: an offset

vector, a column vector and a value vector. The latter two are near-identical to the

ordered, vector-based representation above, with the distinction being that the row

information is encoded in the offset vector. This is known as Compressed Sparse Row

(CSR), which is the transpose of Compressed Sparse Column (CSC), where the offsets

encode column indices and the second vector stores row indices explicitly instead.

For an N dimensional square matrix with nnz < N2 non-zeros, these vectors grow

as O(N), O(nnz) and O(nnz) respectively. If there are very few or no non-zeros

17



in a given row, such as with hyper-sparse data, CSR/CSC pay a price due to the

offset vector and the compression ends up causing bloating instead. More recent

techniques such as Doubly-CSR/CSC (DCSR/DCSC) solve this issue by introducing

yet another level of abstraction by not encoding the row (column) numbers of those

rows (columns) that have no non-zeros, and are successful in reducing the bloat if

there are a significant number of contiguous rows (columns) that have no non-zeros.

Therefore, apart from their memory footprint characteristics, all of these compressed

representations are fundamentally rooted in the ordered, vector-based representations,

and therefore share the same issues [70] with insertions into the middle of a vector

that sparse scatters may induce.

Therefore, none of these approaches are able to robustly and efficiently handle both

sparse gathers and scatters, and therefore, sparse reductions.

Hashmaps

An alternative to linked-list based or vector-based coordinate representation is a hashmap-

based coordinate representation. In doing so, the efficiency of sparse reductions hinges on

the hash strategy.

One approach is to enforce a global ordering, such as with a scalar binary search tree,

where each node of the tree corresponds to one kv-pair, with pivot comparisons defined to

compare keys. When the tree is balanced, lookup, update and insertion (and therefore sparse

reductions) can be done in a logarithmic number of steps rather than a linear number of

steps in the list- or vector-based approaches. Also, this approach lends itself as a natural

baseline in this work, given that this thesis proposes the use of a vectorized binary search

tree to accelerate sparse reductions. In particular, std::map is a CPU-only associative

container that contains unique key-value pairs, and is implemented as a balanced red-black

binary tree [71], allowing for lg N insertion complexity, where N is the number of unique

key-value pairs inserted.
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Another approach is to aim for a constant time hashmap, such as std::unordered map.

However, its performance with real workloads considered in this work is similar to, or worse

than std::map. This is attributed to an inefficient default hash function with long chains,

resulting in frequent linear number of steps. Instead, a non-STL reducer built using the

kokkos framework is a more suitable hashmap, and is in-fact the state-of-the-art software

reducer.

The Kokkos HashMap Accumulator [72] is representative of a CPU-GPU sparse reducer,

consisting of 4 parallel arrays where the hashmap is stored in a linked list structure. The

Ids and Values arrays store the keys and values respectively. The Begins array holds the

beginning indices of the linked list corresponding to the hash values, and the Nexts array

holds the indices of the next elements within the list. While this approach is significantly

better than the baseline, it is not explicitly designed to reduce DRAM ACT/PRE overheads

or improve effective cache bandwidth.

2.3.2 Hardware Reducers

Even the best performing software reducers above are scalar in their manner of data reorga-

nization, meaning that there is still significant scope for cache-centric and memory-centric

optimizations of sparse reductions that inherently lack sequential locality.

Sparse-to-Dense Convertors

GraFBoost [62] is the most recent, state-of-the-art, out-of-core approach (such as

GraphChi [73], X-stream [74], etc.) for DRAM-centric sparse reductions. It acceler-

ates random key-value pair updates through a specialized sort-reduce accelerator which

sequentializes fine-grained random accesses for data pairs stored in secondary (Flash) stor-

age. The accelerator makes use of increasingly larger levels of reductions, all of which are

based on multi-level merge sort. The near-memory reducer relevant to this work is a 16-1

merge tree comprised of 2-1 bitonic mergers. While this work helps reduce redundant data
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movement by staying cognizant of DRAM row inefficiencies when compared to the scalar

approaches above, there are two drawbacks of this approach, First, a source of inefficiency is

the requirement to successively merge exponentially increasing batches of kv-pairs. Second,

from a functionality perspective, GraFBoost requires the entirety of the data stream that has

to be reduced be made available in memory before the in-memory reducer can be launched,

rendering it unsuitable for accelerating workloads such as Firehose (and dynamic/streaming

graphs) that require support for incremental update.

SPiDRE [75] performs LLC prefetching via a programmer-specified rearrange function,

therefore improving cache hit ratios and also useful cache bandwidth. Although this

improves sparse-gather performance, sparse-scatter is not accelerated, and therefore cannot

accelerate sparse reductions. However, the techniques presented in this thesis can benefit

from SPiDRE as it can potentially accelerate the front-end generation of sparse reductions

and downstream sparse gather-only operations as well.

Unlike the near-memory GraFBoost, PHI [63] is a near-cache approach to reducing

DRAM traffic for the sparse reductions problem. In particular, PHI focusses on push-based

updates in the context of graph analytics. It successfully leverages temporal locality in keys

via coalescing, i.e., by treating portions of the cache hierarchy as a write buffer. Traffic to

main memory is further lowered by batched updates. However, during their in-cache update

phase, which is fundamentally scalar in nature, unless the stream of sparse reductions has

significant sequential locality to begin with (which, according to Figure 4.2, is not common

unless the program was explicitly vectorized), PHI is unable to effectively utilize the wide

cache bandwidth available in modern processors, which is where techniques proposed in

this thesis (particularly Chapter 4) excel.

In-Memory Acceleration

There is another class of hardware accelerators that leverage the analog properties of

memory subarrays [76, 77, 78, 79] to perform useful computations. For example, bitline
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Table 2.3: Summary of advantages and limitations of prior work on accelerating sparse reductions.

Type Approach Primary advantage Primary impediment
to efficient sparse reduction

Implicit Mostly-dense data Redundant storage and data movement
Ordered COO (vector) [82] Sparse gather Data movement for sparse scatter

Sparse Ordered COO (list) [59] No explicit data movement Requires traversing the entire structure
representation Unordered COO [59] Constant time insertion for every operation potentially

CSR / CSC [83] Sparse gather, lower storage Data movement for sparse scatter
DCSR / DCSC [67] for several sparse patterns unless performed in key order

Hashmap Scalar BST [71] Bounded complexity Subarray block/row agnostic
based Unordered map [84] Constant time on average Approaches worst case due to collisions

reducer Kokkos hashmap [72] Optimized hash function Subarray block/row agnostic
Sparse to GraFBoost [62] DRAM row conscious Unable to handle incremental updates,

dense data-agnostic all-all comparison
hardware SpiDRE [75] Sparse gather Sparse scatter not supported
convertor PHI [63] Lower DRAM traffic Scalar updates don’t leverage cache b/w
In-memory accelerators [76, 77, 78, 79] Reduced data movement Requires higher level data layout strategy

computing [80, 81] activates multiple word-lines in parallel and infers an and (or nor)

operation by sensing the shared bitline (or its complement).

While such approaches are able to reduce data movement across the memory hierarchy

in general, in the absence of a higher level entity that handles data layout, they are unable

to accelerate irregular problems such as sparse reductions by themselves as there are no

guarantees that the target data are wordline or bitline aligned. Furthermore, these techniques

generally require intrusive changes to the memory hierarchy, thereby hindering commercial

adoption.

A summary of the discussion above is presented in Table 2.3. The mechanisms proposed

in Chapters 3 and 4 strive to improve upon the advantages of these approaches while

addressing their disadvantages.

2.4 Data-irregular Accesses in Error Tolerant Post-Moore Computing

Next generation devices are fast switching even at few tens of millivolts, but as a result,

are vulnerable to thermal noise perturbations, as will be described in further detail in

Section 5.1. This translates into intermittent, stochastic bit errors in logic. With signal

energies approaching the kT noise floor, future general-purpose post-Moore architectures
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will need to treat reliability as a first class citizen, by employing efficient computational

error correction.

One of the most promising techniques to efficient computational error correction is via

the Redundant Residue Number System (RRNS). The RRNS representation of a number

is in the form of a tuple of low bit-width residues. The set of residues is obtained via

the modulus (remainder) when the number is divided by a pre-determined set of co-prime

numbers. A key property of RRNS is that the tuples can operate independent of each

other, for addition, subtraction and multiplication. Besides having performance and energy-

efficiency benefits from the resulting higher level of bit-level parallelism in arithmetic,

RRNS provides the additional benefit of fault isolation between the residues. An error that

occurs (storage, communication or computation) in a given residue does not affect the value

in any of the other residues. As a result, carefully introducing redundant residue(s) allows

for reconstruction of the errant residue, thereby effectively performing error correction, even

if the error was due to a faulty logic operation.

A chief obstacle to successfully leveraging the RRNS representation is that conversion to

and from the conventional position-weighted binary representation is expensive. This means

that it is prudent to maintain all data in the RRNS domain itself, thus including literals,

immediate operands, register data, memory contents and therefore memory addresses to

allow for indirect addressing. However, as a consequence, spatial locality in conventional

dense (data-regular) data applications is broken.

For example, the address referred to conventionally as 0x00 would be represented as

0x0, 0x0, 0x0, 0x0 in an RRNS with 4 residues, and the address 0x01 would be 0x1, 0x1,

0x1, 0x1 in the RRNS domain. Naively treating these tuples, such as via concatenation,

results in an address difference of 0x1111 of what should be adjacent bytes, as intended by

the original application.

In other words, leveraging RRNS for efficient computational error correction in post-

Moore processors induces a new kind of data-irregularity that is different from sparsity-based
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irregularity that has been described earlier in this chapter. More details about the nature of

these RRNS-induced irregularity challenges and architectures to tackle them is presented in

Chapter 5.
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CHAPTER 3

METASTRIDER: ARCHITECTURES FOR SCALABLE MEMORY-CENTRIC

REDUCTION OF SPARSE DATA STREAMS

This chapter describes a memory-centric approach to improving energy efficiency to sparse

data applications in which data-irregularity is inherent, and main memory latency is on the

critical path of the application.

3.1 Memory centric approach to improving energy efficiency

Recall from Section 2.1.3 that low locality of reference, low degree of reuse and low

compute-to-communicate ratios are intrinsic characteristics of hyper-sparse data streams,

rendering even large caches ineffective. Therefore, main memory (DRAM) access latency

and redundant data movement through the memory hierarchy are fundamental bottlenecks.

Numerous proposals to improve the status quo in sparse data research have been made

by parallelizing the application to maximize use of memory level parallelism (MLP) and

parallel compute resources (CPU [85, 86, 87, 88, 89, 90, 72] and GPU [91, 92, 93, 94,

95, 72]). With intelligent and careful design, these techniques are by and large successful

in hiding memory latency, although they come at the cost of increased data movement, a

significant fraction of which is often redundant.

For instance, as representative examples, consider three recent SpGEMM implementa-

tions: a CPU-GPU performance portable framework [72], a GPU-only implementation [94],

and an Intel KNL-based analysis [64]. It is known that the outer-product algorithm (OP) for

SpGEMM is more efficient [65] than Gustavson’s original row-wise algorithm (RW) [96]

because RW does significantly less useful work per unit input data read compared to OP.

Yet, all of these works (as well as a majority of the literature [64]) employ RW instead of OP

simply because caches cannot hold the large number of temporaries (partial products) that
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OP generates. Such favoring of redundant gather for optimized scatter is understandable

as their focus is to maximize cache usage. However, these are not necessarily tailored

towards DRAM operational inefficiencies such as row activation (ACT) and precharge

(PRE) overheads.

Proposals in the hardware accelerator space recognize that even large caches do not

capture locality in such hyper-sparse data streams, and are often designed in a DRAM-

centric manner. However, these either specifically target SpGEMM [97, 98, 65] or are not

suited for handling incremental/streaming updates to sparse data (GraFBoost [62]), and

therefore are incapable of accelerating applications such as Firehose. An exception to this is

SuperStrider [24, 26, 25], although it still suffers from significant DRAM overheads despite

being a memory-centric design.

This chapter presents SuperStrider and its successor, MetaStrider, both of which are

based on vectorized binary search trees (Section 3.2).

SuperStrider employs a vectorized binary search tree in DRAM and a bitonic merge

network near memory. To maximize useful bytes read per ACT (CAS per ACT), a DRAM

row is treated as a first-class citizen and is the fundamental unit of operation. The row

logically forms a node in the tree, where each node contains a vector of records sorted by

key, as well as a pivot (key) and a pair of child pointers.

The tree is built in 2 phases. Phase 1 (Addvec()) sends records across a dynamically

determined path of the tree from the root node to a leaf node while performing any possible

reductions along that path. As a result, Addvec() results in possibly duplicate keys in

different paths of the tree, that are yet to be reduced. Phase 2 (Normalize()) performs

two depth-first-searches (DFS) on the entire tree to reduce and de-duplicate such records.

Addvec() is repeated multiple times to incrementally build the tree as new input that

needs to be reduced is streamed in. Normalize() is performed once, at the end. As a

result, SuperStrider returns significantly improved performance and energy efficiency when

compared with prior software approaches.
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Figure 3.1: Data layout of records and control fields/metadata in a DRAM-centric vectorized
binary tree. The Metadata fields of MetaStrider are more expressive than the control fields of
SuperStrider, and are decoupled from the kv-rows. This results in direct and indirect benefits as
described qualitatively in Section 3.3.1 and quantitatively in Section 3.5. The values are omitted (in
the Figure) from the kv-rows for brevity.

However, the energy overhead of Normalize() is equivalent to re-running

Addvec() on the entire input stream again, a significantly excessive overhead. Given the

promising nature of the memory-centric approach of SuperStrider, MetaStrider builds upon

it, as is explained in the remainder of this chapter.

3.2 Vectorized Binary Search Trees

SuperStrider [26] introduces a novel, explicitly managed DRAM layout for sparse data to

improve row locality, where each DRAM row forms a node in a vector binary tree. To

manage the tree, control fields in the form of a pivot (key) and a pair of child pointers are

needed at each node, i.e., for every block of K-sorted key-value pairs that constitute the

node, as shown in Figure 3.1. K=170 is used as the default in this work unless otherwise

mentioned. This is derived assuming a 2 KB row [99] consisting of records whose keys are

64-bit and values are 32-bit (Section 2.2.3).

In general, two properties are desired of the tree:

1. Property 1: For each node, all records in its left subtree have keys smaller than the pivot

key of the node, which, in turn is smaller than the keys of its right subtree.

2. Property 2: For each node, all keys in its left subtree are less than all keys of the node,

which are in turn less than those of its right subtree.
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Figure 3.2: Example functionality of Addvec() with K = 5.
Step 1: Front-end supplies a pre-sorted 5-vector to insert and reduce.
Step 2: ReduceAndDedup() is applied on the root node, given the input. In this example, records
with key=802 were reduced and de-duplicated.
Step 3: The pivot of the root node partitions the resultant vector, to determine which records need to
be written back to the root, and which serve as input to recursively apply ReduceAndDedup() to
one of the node’s children. The relative direction of the larger partition determines the direction of
recursion.

Property 1 is guaranteed to be true of the tree at any time including during incremental

construction. Property 2, which is more strict, is guaranteed to be true for the final state of

the tree, such that no duplicate keys exist.

The operational granularity being that of a DRAM row, the tree is built K records at a

time. K pre-sorted records are added to the tree (and reduced and de-duplicated with existing

records in the tree) via an operation known as Addvec(), which recursively applies a

ReduceAndDedup() function along a path P of nodes (rows) of the tree, as shown in

Figure 3.2. The ReduceAndDedup function takes two K-sorted vectors and generates

a deduplicated vector of size at-most 2K, post reduction. Depending on the pivot key at

that node, the larger partition (of size K, in general) is sent as an input vector to be applied

recursively to the left or right child of the node, and the smaller partition (of size ≤ K, in

general) is written back to the node. This acyclic path P traverses the tree starting at the root

and ends in a leaf of the tree (potentially creating a new leaf), or when there are no records

left as a result of ReduceAndDedup(), whichever is earlier. When a new leaf node is

created, a constant pivot key is chosen for that node as the median of its associated records.

In traversing P , a key observation that enables SuperStrider performance is that

Addvec() visits at most 1 node (row) per level in the tree while simultaneously per-
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Figure 3.3: Overhead of Normalize() in SuperStrider is >100% on average, thus motivating an
improved, energy-efficient design. (See Figures 3.11, 3.14 for a quick look at how much MetaStrider
reduces this.)

forming the reduction operation and avoiding random accesses to DRAM. The downside,

however, is that there may be duplicates along other paths of the tree, which have to be

consolidated. A detailed example is available in the SuperStrider publications [26], but is

omitted here for brevity. In the operation of Addvec(), Property 1 is always maintained.

As a result, duplicates along different paths of the tree can be reduced and deduplicated as a

final post-processing step that fixes any nodes in violation of Property 2.

This step, known as Normalize(), consolidates the left and right subtrees of each

node in a DFS manner. This is done by traversing the left (right) subtree, extracting the

leaf that houses the maximum (minimum) key and performing an Addvec() at the parent

node with the contents of the leaf as the input vector whenever Property 2 above is violated.

However, this tree traversal for Normalize() in SuperStrider is rather expensive in terms

of energy, as quantified in Figure 3.3.

Furthermore, the latest version of SuperStrider employs a bitonic merge based systolic

network to realize the ReduceAndDedup() functionality [25]. The control logic (and

stride management) is such that the inputs to the network are always K-sorted, an invariant

that is re-enforced by Addvec(). This means that ReduceAndDedup() can be done in

O(K) steps rather than O(K lg K) steps that the bitonic merger would require.

Key design decisions based on analysis of the state-of-the-art are now summarized.

First, sparse streams have low locality of reference, rendering automatic caching ineffec-

tive. MetaStrider chooses to bypass caches to save energy.

Given that DRAM accesses are on the critical path of the application, maximizing row
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locality is key. The vectorized binary tree approach proposed by SuperStrider for optimizing

data layout is a promising one, but it can be made better via improved Metadata and its

management (Section 3.3.1).

DRAM access occurs in bursts (64-bit for DDR4 and 128-bit for HBM).

ReduceAndDedup() is the fundamental compute operation in MetaStrider, and is im-

plemented using a light-weight merge network at the memory controller (Section 3.3.2).

Designing the merge network such that it incrementally constructs the output by consuming

the input in this manner would natively hide merge network latency without additional mech-

anisms such as write buffer, row re-map memory, etc. [26], as described in Section 3.3.2.

Given that the merge network is small, it can be replicated in order to enable parallel

operations on the tree (Section 3.4) in order to leverage MLP. Finally, two variants of

MetaStrider are considered:

• One that uses the memory-centric design without any extra hardware, at the cost of

potentially increased energy consumption due to traffic on the system interconnect. In

such a design, ReduceAndDedup() is performed by the front-end core instead of

dedicated hardware.

• One that uses dedicated logic for merging “near” memory, at the DRAM controller. Such

near data processing (NDP) not only reduces data movement but also enables an even

tighter logic-memory integration for future variants as technologies evolve in the third

dimension [100]. Therefore, unless otherwise mentioned, this work assumes the latter

variant (and not the non-NDP variant) to be the default for MetaStrider.

3.3 MetaStrider

3.3.1 Metadata

Recall from Section 2.3.2 that SuperStrider’s Normalize() is rather inefficient. Careful

analysis reveals the reason for this as redundant DRAM row activations in traversing down
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a given subtree in determining whether or not Property 2 is violated at the root node of the

subtree. As a solution, MetaStrider chooses to “memoize” certain range information such

that testing for the property can be done without pointer chasing. If the range information

indicates that Property 2 is not violated, then no further actions are necessary (meaning no

DRAM ACT) at that node, and the DFS super-step can continue. Typically, it is found that

this is the majority scenario, which means that such extra “metadata” is worth the extra

spatial overhead (a classic speed vs space tradeoff).

Table 3.1: Description of MetaStrider’s metadata fields.

MetaStrider “metadata”
SuperStrider “control fields’’ Additional fields unique to MetaStrider

Field Description Bytes Field Description Bytes
RowAddr DRAM row ID of node 2 Min Min key of node 8

Pivot Pivot key associated with node 8 Max Max key of node 8
Addr L DRAM row ID of left child 2 Max L Max key of left subtree 8
Addr R DRAM row ID of right child 2 Min R Min key of right subtree 8

Table 3.1 describes the resultant Metadata fields with numerical examples apparent in

Figure 3.1. Observe that Property 2 can now be translated as follows: maxL < min < max

< minR for any node.

To avoid confusion, the terminology of Metadata is unique to MetaStrider, and “con-

trol fields” are used to describe the equivalent for SuperStrider. Since SuperStrider’s

Normalize() is now updated to benefit from these Metadata as described above, it is

called GlobalReduce() in the context of MetaStrider.

The primary advantage, a direct one, therefore stems from the introduction of these

extra fields. The overhead of DRAM ACT is paid only when absolutely necessary.

The secondary advantage, an indirect one, stems from decoupling the Metadata from

the kv-rows into a separate Metadata Store. This helps in improving structural properties

of the tree such as density and worst-case guarantees. For example, with AVL tree balanc-

ing [101]1, the tree is guaranteed to be dense irrespective of nature of sparse input, and
1An Adelson-Velsky and Landis (AVL) self-balancing binary search tree ensures that the heights of the

two child subtrees of any nodes differ by at most one. In the context of MetaStrider’s vectorized binary tree,
AVL balancing is applied on the pivots of the nodes, without moving actual row contents.
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such balancing can be done efficiently on the Metadata Store alone (without disturbing the

kv-rows). It is found that decoupling and AVL balancing alone reduce the average number

of DRAM ACTs by over 20% when compared to an implementation where all the Metadata

fields above are present but are not decoupled. Formally, the number of ACTs per call to

Addvec(), irrespective of input, is bounded by the number of levels of the tree, which in

turn, thanks to the AVL property, is bound to lg N , where N = nnz
K

is the number of nodes

in the tree.

Such decoupling also enables other downstream tree-optimizations such as partitioning,

fanout, etc. (Section 3.4) to be made without having to re-build the system from scratch.

The overhead due to the Metadata Store is a small fraction of the data being stored.

From Table 3.1, each node needs 46 bytes’ worth of Metadata, 32 bytes of which are key-

range information. For a 2 KB wide row being treated as a node, the overhead is therefore

just about 2%. This overhead can be reduced via partial omission or compression of fields,

the details of which are beyond the scope of this work. These mechanisms may be designed

based on the following insights: (a) MetaStrider performance is not very sensitive to average

access times of the Metadata Store (Section 3.5), (b) key-range information accounts for

a significant fraction of the Metadata overhead (70%), (c) ranges are useful only during

GlobalReduce(), (d) lower levels of the tree are less likely to be accessed, and (e) range

re-computation can replace memoization for nodes with shallow sub-tree depths.

3.3.2 Architecture and Integration

Figure 3.4 presents, at a high-level, the micro-architecture that MetaStrider implements. Re-

call from Section 3.2 that the non-NDP variant utilizes the CPU to perform the functionality

of the NDP unit. It can be deployed using off-the-shelf devices given the following two

capabilities: ability to bypass caches, and ability to control row management (possibly via

partial knowledge of row address interleaving). The remainder of this section focuses on

describing the components of the NDP unit and then discussing techniques of integrating
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Figure 3.4: A schematic of MetaStrider microarchitecture, implemented as part of the memory
controller. In this work, the memory controller is designed to be able to access both, system memory
and MetaStrider memory (pre-segmented at the beginning of the program using the Init() API).

MetaStrider with conventional system software.

Merger Unit is responsible for performing ReduceAndDedup(), which is the recur-

rent sub-step used in Addvec(). It reads records in bursts from DRAM on one side and

the front-end on the other. The ALU then compares the keys and performs reduction on their

values if necessary. If no reduction is performed (i.e., distinct keys are input from both sides),

then the record with the higher key is retained in the ALU input register for subsequent

comparison, and that with the lower key is pushed to the tail of the output FIFO. This process

is repeated until K records are read from each side. As described in Section 2.3.2, the output

controller then sends the first/last few (≤ K) records (depending upon the pivot) back to the

open DRAM row, and retains the remaining (typically K) records in the FIFO. These latter

records are then internally streamed to the ALU for the next sub-step when records from

one of the child DRAM rows are streamed-in.

For example, in the example from Figure 3.2, the first record read from DRAM and the

input, respectively contain the keys 795 and 802. The ALU subsequently retains 802 and

pushes 795 to the tail of the FIFO. Next, the record with key 802 is read from DRAM, and

the ALU detects a collision and accordingly updates the associated value. Then, the record

with key 900 is read from the input, causing the ALU to retain 900 and push the record

with key 802 and its updated value to the FIFO. This process is repeated until both, the

32



DRAM row and the input batch are read, and this results in the FIFO containing 9 records

in this example. As the output controller finds that a majority of records are less than the

pivot, it retains the lower 5 records in the FIFO to stream as the input batch for the next

ReduceAndDedup() operation (on the left child). The higher 4 records are written back

to the open DRAM row.

Note that this design, unlike SuperStrider’s bitonic network, interleaves logic (ALU)

and memory operations at the granularity of a DRAM burst. Furthermore, the complexity is

linear in K, as opposed to log-linear (SuperStrider).

Metadata Store is akin to an SRAM cache in utility and dimensions, although it is

explicitly managed as a scratchpad. Ideally, it would be housed on-chip with the memory-

controller for fast access. Alternately, the LLC, which is largely unused for MetaStrider, can

be used for this purpose. However, either of these strategies may not be possible when the

size of the tree grows such that the total Metadata overhead is over several MB. In such a

scenario, realizing the following key insight is helpful: the first few levels of the tree (and

therefore their Metadata) are significantly more likely to be accessed frequently. Therefore,

it would be advisable to “cache” these on-chip, and spill the rest off-chip, perhaps into

system memory. A detailed analysis of off-chip Metadata Store is beyond the scope of this

work. However, Section 3.5.4 demonstrates that nominal values of average access latencies

have an insignificant impact (< 0.5%) on overall performance.

Control State Machine. The control logic is able to issue load and store commands to

the Metadata Store and to the memory controller, in addition to Merger Unit data routing.

These functions are well within the capabilities of modern, smart memory controllers that

perform sophisticated scheduling, queue coalescing, address interleaving, idle row closure

decision making, etc. [102, 103].

API. Table 3.2 summarizes a simple, offload-based blocking API to integrate with the

MetaStrider engine. Note that the front-end producer of sparse data may be a general

purpose CPU, accelerator, external flash device [62] or network I/O [49]. Without loss of
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Table 3.2: MetaStrider Application Programming Interface (API)

API Comment

Init (sz, n, f)
MetaStrider configures its K, MLP-strategy (Section 3.4),

reserves corresponding segment(s) of memory.
EnqReduce (k, v) Each core sends to memory K sorted records one by one.

Addvec()
Each core signals Addvec() on its tree after K

EnqReduce() or end of input, whichever is earlier.
GlobalReduce() Each core signals end of input.

Lookup(key) Lookup the value of key or initiate in-order traversal.

generality, “core” is used to abstract these producers of sparse data. Sufficient memory is

assumed available to house all records.

The most straightforward use-case scenario is where the programmer (or in certain

cases, the compiler) identifies a sparse data stream to be reduced, and accordingly initializes

MetaStrider with the size of records, number of cores supplying packed sparse data in

parallel, and the desired reduction operator. MetaStrider accordingly configures itself based

on available resources, reserves corresponding segment(s) of memory and returns the value

of K to the program. Each core then scatters the gathered sparse data to be reduced by

first pre-sorting these, K at a time, and then dispatching them in-order via EnqReduce().

Recall from Section 2.3.2 that this pre-sorting is a necessary requirement for scalable

Addvec() functionality. Note that standard sparse input formats (see below) are pre-sorted

by themselves. If the application is such that it is not possible to obtain a pre-sorted input,

an incrementally sorted paradigm such as a priority queue may be used while K records are

gathered and buffered at the front-end. Even if it is decided to perform a Klg K sort as a

separate pre-processing step, our analysis in Section 3.5.5 reveals that the core frequency

required for this to be in parallel with a preceding Addvec() is modest (< 1GHz) for

typical values of K (recall that Addvec() typically involves reading and writing multiple

DRAM rows in succession, and is therefore a relatively longer latency operation).

After K such EnqReduce() calls, an Addvec() call signals the MetaStrider con-

troller that the end of this batch (of size K or end of input) is reached. This process is

repeated until the input is consumed. GlobalReduce() is then called to ensure the entire
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// A and B may be stored in conventional sparse formats or in the MetaStrider format.
SpGEMM OuterProduct (Matrix A, Matrix B):

// Initialize MetaStrider memory.
K = MetaStrider.Init(12, 1, "+")
colA = A.readNextNonZeroColumn()
rowB = B.readNextNonZeroRow()
// Assume that the column index of colA and the row index of rowB are identical (k). If

not, advance accordingly until they are (not shown).
for (i, k, A_ik) in colA:

for (k, j, B_kj) in rowB:
key = makeKey(i, j)
value = A_ik * B_kj
sortedQueue.pushAndSort((key, value))
if (sortedQueue.size() == K or EOF):

// Stream records for Addvec().
while (sortedQueue.size() > 0):

MetaStrider.EnqReduce(sortedQueue.popMin())
MetaStrider.Addvec()

// Repeat lines 5-17 until A or B consumed. Then:
MetaStrider.GlobalReduce()
// Perform gather for downstream operations as needed.
MetaStrider.Lookup()

Figure 3.5: Demonstration of MetaStrider API

dataset is reduced and de-duplicated, thereby priming the data for downstream operations.

For clarity, the above is also explained via a specific example in the form of how

the MetaStrider API may be used in the context of a single-core SpGEMM, as shown in

Figure 3.5.

Conversion to/from other representations. Commonly used linear sparse formats

include ordered-coordinate, (doubly-)compressed-sparse-row (D)CSR [59, 66, 67, 68, 69].

For hyper-sparse matrices such as those of interest in this work, CSR offers little benefit over

ordered-coordinate as there are few non-zeros per row. DCSR offers benefits only when a

group of consecutive rows are all zero. Thus, ordered-coordinate (typically stored as arrays

of keys and values) are most commonly used in this space [104]. All of these representations

have the disadvantage of not being able to support dynamic updates efficiently as they

fundamentally require insertion into the middle of an array. Nevertheless, MetaStrider

operation is independent of and is compatible with inputs in any of these formats. Note

that the MetaStrider representation most closely resembles ordered-coordinate with DRAM-

friendly enhancements.

Conversion from these formats into MetaStrider format is a direct application of the API
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when the original input is streamed record-by-record into the MetaStrider engine. Thus, no

explicit conversion is required as conversion can be combined (implicitly) with downstream

operations.

Converting back to a conventional linear ordered format from the MetaStrider format

can be achieved easily by reading out the records back from the tree via an in-order DFS

traversal. However, further operations on MetaStrider data do not require conversion to a

traditional format as long as the operations are associative. In other words, downstream

algorithms can stream in data from the MetaStrider tree in a DFS or BFS manner directly

without having to store an intermediate linear matrix format into memory. Furthermore,

several hash-based applications do not even require ordered input data [64]. As such, it is

envisioned that such explicit write-out to occur only once all processing on data is complete,

and only if necessary for backward compatibility.

Explicit or implicit conversion to/from these formats can thus be done on the fly, in

parallel with downstream operations. Therefore, there is negligible impact on performance

due to conversion.

Lookup. Finally, one can extract the value associated with key κ via Lookup(κ),

where the Metadata is consulted to perform a binary search over the nodes of the tree (using

the pivots) to locate the node whose key-range includes κ. If such a node is found, the

corresponding DRAM row is opened. Then, a binary search within the row is performed to

locate κ as the records in the row are already sorted.

3.4 Leveraging Memory Level Parallelism (MLP)

So far, this chapter has focussed on MetaStrider from the perspective of a single bank of

memory (MLP=1). Modern memory systems have significant MLP available via bank, rank

and channel level parallelism. For example, HBM has 8 channels, each of which comprises 8

banks, resulting in an MLP of 64. This section explores several mechanisms for parallelizing

a MetaStrider tree to leverage available MLP and obtain improved performance (assuming
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(a) Baseline MetaStrider. When pipelined, the
colors indicate a level-partitioning scheme (Sec-
tion 3.4.2).

(b) Tree Partitioning

(c) Node Grouping. (d) Increasing Fanout.

Figure 3.6: Four novel techniques of vectorized binary tree management to leverage MLP. Different
colors indicate different banks of memory that can be accessed in parallel.

the input rate (front-end) can keep up).

Figure 3.6a depicts the baseline MetaStrider tree (N nodes and lg N levels) sprawling a

single bank of DRAM, as well as parallel approaches described below.

This section focuses on Addvec() and not on GlobalReduce(). This is because

our Metadata improvements (Section 3.3.1) have significantly reduced the overhead of

the latter (Section 3.5.4) such that Addvec() is now the most critical step. Furthermore,

parallelizing GlobalReduce() can benefit from years of parallel DFS research [105]

and is therefore not necessarily a novel contribution of this work in itself.

Note that with the exception of Tree Partitioning approach, none of the other three

approaches require the programmer or compiler to make any code changes. If a power user

wishes to override the default strategy, it is sufficient to simply extend the Init() API to

specify a bit-mask to indicate which mode(s) to deploy.

3.4.1 Tree Partitioning

The single tree can be spatially partitioned by key into T trees, each containing N
T

nodes and

lg N
T

levels. This enables the trees to function independently and in parallel (Figure 3.6b

shows T = 2). Furthermore, the unit of work for each tree is reduced as they each have
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fewer nodes and levels are significantly reduced when compared to the baseline MetaStrider

tree. For these benefits to fully manifest, the following are desirable:

Load balancing. For shortest critical path, all the trees should have approximately an

equal number of records to reduce. A round-robin distribution of keys (tree t gets keys such

that key%T == t, where % is the modulo operator) is a simple, yet effective approach at

this. Load balancing can be further improved via hashing, provided the hash is perfect and

preferably minimum and uniformly-distributing.

For example, it is known that the Residue Number System (RNS) [106] can help

distribute contiguous data to a wider range [31, 30, 29]. Such a hash function would

be computed by concatenating the set of residues (moduli) R(κ) of key κ against a

pre-determined set of co-prime bases B such that R(κ) = {κ%b, b ∈ B}. For keys

generated by indexing into a matrix of at most 100M × 100M dimensions, it can

be shown that B = {45, 46, 47, 49, 53, 59, 61, 67}, B = {2049, 2050, 2051, 2053} or

B = {4194305, 4194306} for T = 8, 4, 2 respectively, are suitable for such RNS hash-

ing. Other similar hash functions that help extract MLP in modern systems, such as

XOR-based hashes [107, 108] may also help improve load balancing. Finally, note that

any such record-to-tree assignment is to be applied by the front-end prior to the call to

EnqReduce() in order to satisfy the pre-sorted input condition. The evaluation therefore

is bounded by T = 8 so as to limit the amount of intra-front-end state communication.

Parallel NDP and front-end hardware. The front-end should be capable of feeding all

trees in parallel for maximum benefit. In other words, the front-end should be able to issue

T Addvec() calls in parallel. Next, the control logic, Merger Unit and Metadata Store

need to be replicated at some level. Note that the former two are relatively light-weight by

design and can therefore be replicated.

The Metadata Store need not increase in size as the total number of nodes (hence

total Metadata) doesn’t change with tree partitioning. For example, if the unpartitioned

tree has 100 nodes, then with T = 4 partitions, each partition would nominally have 25
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nodes (resulting in each partition being a shallower/faster tree). However, it is desirable to

implement the Metadata Store as a multi-banked store for parallel access.

API usage. The programmer or compiler must perform the following for updating T

trees in parallel, in order to benefit from the tree partitioning strategy:

1. Specify n = T in Init().

2. Create T threads, each with a thread-private version of sortedQueue (cf. Listing

1).

3. Each thread produces records, applies the load-balancing hash to its keys and then

sends to appropriate thread.

4. Each thread then calls EnqReduce(), Addvec() and GlobalReduce().

3.4.2 Pipelining

Given sufficient resources, pipelining is a compelling mechanism of extracting parallelism

from a stream of independent instructions. For pipelining MetaStrider, resource is equivalent

to MLP and instructions are equivalent to recurrent calls to Addvec(). Recall that each

such call typically traverses several levels of the tree, accessing exactly one unique DRAM

row (assume F = 2) per level (hence, no data stalls are possible). Therefore, given sufficient

MLP (read no resource stalls), consecutive calls to Addvec() can occur at every time step

(τ ) as shown in Figure 3.7, where τ is the time required to perform ReduceAndDedup()

on a row. This is similar to deep-pipelining or sub-pipelining the function units in the

execute stage of a traditional processor.

Resource allocation. The intuition of our approach to minimize resource stalls stems

from the following insight: assigning each pair of consecutive levels of the tree to different

memory banks eliminates resource stalls for a (sub)pipeline depth of 2. It can then be

seen that, for a tree of depth D ≤ MLP , assigning each level to a different bank (level-

partitioning) enables pipelines of depth MLP (Figure 3.6a shows D =MLP = 4).
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However, beyond a sufficiently deep level Dthres ≤ D, the number of rows in that level

may exceed the size of a bank. For example, with a 128 MB (64K x 2 KB rows) bank,

Dthres = 16. To account for bank capacity, this level-partitioning approach is applied only

to the first Dthres − 1 levels of the tree, and subsequent levels d ≥ Dthres are each sliced

equally across the banks, resulting in batches of 2d

MLP
rows of level d per bank.

Load balancing. When D > MLP , the above level-partitioning mechanism requires

further thought for levels at depth d, where MLP ≤ d < Dthres. In other words, a relatively

small MLP would result in increased resource stalls in the pipeline if the load distribution

to the banks is not uniform. A simple mechanism to address this is to assign such levels to

different banks in a round-robin (RR) manner. Note two properties of the tree, as one goes

down the tree: (i) the number of rows in each level doubles and (ii) the probability of a level

being accessed decreases. RR is not cognizant of either of these properties, thus begetting

an improved heuristic.

If D were known apriori, levels 0 and D would then be mapped to bank 0, levels 1

and D − 1 to bank 1, and so on. Such an allocation factors in both of these properties

above to realize a balance that is as close to the ideal as possible. However, as the size and

percentage of repeated keys of the input is not known, D is not static and hence cannot guide

resource allocation. Therefore, an incremental variant of this heuristic is proposed, where

levels are assigned in a ping-pong (PP) manner such that level d maps to bank (d%MLP ) if

d%(2×MLP ) ≤MLP , else, it maps to (MLP − d%MLP ).

More complicated approaches that are not level-partitioned are possible when this is

expressed as a graph coloring problem. However, according to our analysis, a simple

heuristic such as PP is able to leverage about 80% of available MLP on average (and reduces

resource stalls by over 35% when compared to RR). Yet other designs may choose to literally

cache the “rows” of the first few levels of the tree that tend to be accessed most frequently,

although those approaches may not scale easily with increased number of trees.

Supporting hardware. Explicit pipeline buffers are not necessary as the DRAM rows
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Figure 3.7: The “EX” stage can be sub-pipelined to leverage MLP.

implicitly serve as buffers. The Merger Unit needs to be replicated in order to take advantage

of MLP, similar to Section 3.4.1. The Metadata Store capacity remains unchanged but

requires parallel access in order to serve multiple inputs simultaneously. The front-end still

produces a single input to Addvec() at a time, its rate being determined by pipeline depth

(MLP).

3.4.3 Grouping

Yet another mechanism of leveraging multiple banks is to group two rows of the same

index across two banks into the same node (Figure 3.6c). The motivation is that it would

increase K logically, thus improving algorithmic efficiency because of denser trees and

higher probability of parallel reduction. For example, say K = 170 records fit in a row. By

grouping such rows across 4 banks and associating them with a single tree node, K = 680

is realized.

This results not only in trees with reduced depth, but also in lower Metadata overhead

thanks to the reduced number of nodes. However, grouping increases the load on front-end

as it now has to pre-sort gathered data in batches of 680 records rather than 170 records

before sending it across for scatter, although it reduces the Metadata Store overhead by 4×.

Also, MLP is not utilized within a tree if the same Merger Unit as baseline MetaStrider is

used. If MLP has to be utilized, a log-hierarchical network similar to SuperStrider’s bitonic

merger is better suited, although it does not fully support fine-grained logic-memory overlap.
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3.4.4 Fanout

The arity/fanout (F ) of a binary tree can be increased to F > 2 to decrease the number of

levels of the tree to logFN (Figure 3.6d shows F = 3), thereby facilitating faster MetaStrider

operation. However, it then becomes necessary to increase the number of DRAM rows

associated with any given node to F − 1 in order to maintain the granularity of operation

to be that of a DRAM row (recall from Section 2.3.2 that row-granularity operations are

fundamental to increasing row locality in a vectorized tree design).

As an example of contradiction, assume each node in a 3-ary tree is still associated with

a single DRAM row. A 3-ary node would by definition have 2 pivots instead of 1 in order

to result in 3 partitions corresponding to its 3 children. During ReduceAndDedup(),

consider the task of partitioning (at most) 2K records in the output buffer of the Merger Unit

into 3 partitions. Depending on the nature of the 2 pivots, it cannot be guaranteed that at

least one partition has at least K records in it. Therefore, it is not possible to propagate any

single partition to a child without violating the row-granularity of operations. Propagating

< K records to a child would result in significantly diminishing returns (increasingly lower

useful bytes accessed per subsequent ACT) as one traverses down the tree. On the other

hand, propagating two partitions down the same direction would violate Property 1 (when

generalized to F ≥ 2, see below). Instead, if 2 DRAM rows are associated with a 3-ary

node, then the task of partitioning would involve (2K +K = 3K) records. It can then be

guaranteed that at least one partition has at least K records.

The conclusion is that MLP ≥ F − 1 is necessary to retain the row-granularity of

operations. Increasing F is, in essence, another way of leveraging MLP. Note, increasing

fanout can leverage MLP without requiring a parallel front-end.

The Merger Unit architecture is similar to the F = 2 case, with the output buffer being

of size F ×K and the control logic being updated to support F partitions.

Changes to the algorithm. One may gain intuition for the general working of updated

Addvec() and GlobalReduce() based on the text above and on the generalized version
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of Property1, 2 (Section 2.3.2) below, for each F -ary node:

1. Property 1: All records in its f th subtree have keys smaller than the f th pivot key of the

node, which is in turn smaller than the keys of its (f + 1)th subtree, where 0 ≤ f < F .

2. Property 2: All keys in its f th subtree are less than all keys of the node, which are in

turn less than those of its (f + 1)th subtree, where 0 ≤ f < F .

Impact on Metadata. An F -ary node requires storage of (F − 1) pivots, addresses

of its (F ) children, and key-ranges of each of the following: (F ) partitions of the node,

(F − 1) rows associated with the node and (F ) subtrees of the node (some of these metadata

overlap and are rendered redundant when F = 2). As a result, when compared to the per

node Metadata size in bytes of F = 2 (46 bytes: Section 3.3.1), an F -ary node’s Metadata

experiences an increase by a factor of about 0.7F where F > 2. However, note that upon

increasing F , the number of nodes reduces because each node now consists of upto (F−1)K

records. As a result, the total overhead of Metadata in bytes, when compared to F = 2, is

an input-dependent factor α, where α ∈[0.7F
F−1 , 0.7F ] and F > 2.

Summary of Section 3.4. In this section, 4 orthogonal approaches to leveraging MLP

are proposed, all of which can be used in conjunction with each other. This results in a

tradeoff-rich design space, given hardware constraints and availability. Based on recent

industry trends, the preference of these are as follows: Partitioning > Pipelining > Grouping

> Fanout. In particular, a combination of Partitioning and Pipelining is found to be most

practical and efficient. A more quantitative treatment is available in Section 3.5.5.

3.5 Experimental Results

3.5.1 Evaluation Methodology

Recall from Section 2.2.3, the focus of this work is to tackle main memory latency for

sparse data. As such, the first-round of simulations deploy a single channel of 128MB of

HBM main memory with a relatively liberal 4MB of LLC to favor the software reducers
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Table 3.3: Simulation infrastructure

Section Tool
Baseline, kokkos 2.3.1 Unmodified gem5 [109]

MetaStrider 3.3.2 gem5 + cache bypass
SuperStrider 2.3.2 + dedicated accelerator memory
GraFBoost 2.3.2 + hardware at memory controller

Rapid design space
3.4

Cycle-accurate, in-house simulator
exploration using HBM timing parameters [99]

Power, area
Logic ALU [110, 111]

Memory SRAM-CACTI [112], DRAM [113]
(22nm models) System Interconnect OpenSMART [114]

conservatively. The software baselines benefit from bank-level parallelism (8 banks in a

channel), whereas MetaStrider conservatively does not leverage this in these first round of

simulations. As is standard practice, an FR-FCFS memory scheduler, and an open-adaptive

row management policy are used. Although the reducers in this work (including MetaStrider)

would perform with any DRAM without significant changes in efficiency, HBM is chosen

because its stacked architecture naturally lends scalability to near-data processing (NDP),

allowing for easier comparisons in future works.

Since the workloads have low compute intensity, the LLC and DRAM are driven with

an inorder core (with 8-way 32KB L1 I/D caches). The system is simulated using the gem5

full system simulator. In particular, MetaStrider is implemented as a separate MemObject

connected to the system interconnect. MetaStrider API is implemented using gem5’s

pseudo-instructions at the front-end.

A second round of simulations are designed to evaluate the scalability of MetaStrider

with available MLP. For simulation speed, a cycle-accurate, in-house simulator is used for

this purpose.

A summary of the simulation infrastructure is in Table 3.3. This work makes an effort to

compare MetaStrider against other state of the art reducers (Sections 2.3.1, 2.3.2) across

various domains (CPU, GPU, accelerator, out-of-core) to provide reasonable insights. For

fair comparison, this work re-implements these original works using the infrastructure above

to better suit them for sparse associative reduction, making assumptions in their favor where

44



(a) Reduction in DRAM ACTs.

(b) Reduction in total bytes read from DRAM.

Figure 3.8: MetaStrider significantly reduces the number of activates as well as DRAM traffic,
when compared to the baseline (higher reduction is better), thanks to its memory-centric design and
intelligent Metadata.

possible (for example, ignoring the overhead of SuperStrider’s control fields and row-remap

memory). Finally, to compare against GraFBoost, which requires all the partial products to

be available in memory apriori, a “batch” mode is also implemented.

3.5.2 DRAM Performance

Row activation. Figure 3.8a shows a significant reduction in ACTs (and subsequent PRE).

An average reduction of over 17× and 37× is seen for kernels in SpGEMM and Firehose

respectively when compared to the baseline. Furthermore, these are 1.8× and 1.6× better

than SuperStrider thanks to MetaStrider’s improved Metadata capability.

Row hit rate and CAS per ACT. Bytes read per ACT of a 2 KB DRAM row is close to

64 for the baseline because the default read-out is the cache line size. Kokkos significantly

improves locality characteristics, reading over 300 bytes per ACT, for a row hit rate of close

to 80%. MetaStrider and SuperStrider achieve a row hit rate in excess of 95% and bytes per
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(a) A breakdown of average un-core energy.

(b) Overall kernel speedup.

Figure 3.9: The most energy efficient reducer is the NDP variant of MetaStrider, realizing 5.3×
energy savings when compared with the next best reducer, upon averaging across all workloads.
Furthermore, it does so with a 11% performance improvement.

ACT of over 2000.

DRAM bytes read. As a result of the above observations, MetaStrider reduces DRAM

pressure by 1.9× and 4.9× for SpGEMM and Firehose respectively when compared with

the baseline, as shown in Figure 3.8b. These are significantly superior when compared with

the other reducers (both hardware and software). In fact, SuperStrider ends up reading more

bytes from DRAM on average for SpGEMM workloads on average when compared to the

baseline because of its row-heavy operations, especially during its Normalize() phase.

3.5.3 Full System Results

Energy Savings. A summary of un-core kernel energy savings due to MetaStrider is

depicted in Figure 5.5, when averaged across all workloads. (For fairness, for the non-NDP

MetaStrider variant, the front-end core’s contribution to ReduceAndDedup() is viewed

as un-core energy, and is denoted by “Merger Unit”). Clearly seen, when compared to the

baseline, MetaStrider reduces energy consumption significantly for all system components.
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Figure 3.10: When all of the input kv-pairs are already available in memory, MetaStrider reduces
un-core energy consumption by almost 15× and is 30% faster than the state-of-the-art approach for
such merging because of its superior handling of DRAM rows.

The added overheads due to the Merger Unit and Metadata Store are dwarfed by these

savings. Even when compared to SuperStrider, there is significant improvement in energy

savings due to DRAM and the Merger Unit.

Area Overhead. The Metadata Store requires 7.74 mm2 for 3MB of Metadata required,

which can be significantly reduced if techniques such as grouping (Section 3.4.3) or com-

pression (Section 3.3.1) are used. Furthermore, the store can also use existing LLC-SRAM

or system DRAM if a dedicated budget is not available, as described in Section 3.3.2. The

Merger Unit requires a mere 0.06 mm2, which, when compared to an HBM die size of

40-100 mm2 [115, 116, 117], is a very small fraction. Therefore, techniques that leverage

MLP (Section 3.4) that may require some form of replication of the Merger Unit can also

be easily realized on the same die. Note that this is significantly less resource intensive

when compared with SuperStrider’s bitonic merge network (0.24 mm2) and GraFBoost’s

hierarchical merge tree (2.36 mm2).

Kernel Speedup. Figure 3.9b depicts the kernel speedup over the baseline when aver-

aged across all the workloads. The relative trend among the configurations can be explained

easily based on the detailed breakdown presented thus far. For SpGEMM workloads,

MetaStrider approaches the Amdahl limit with a deficit of less than 8%. Note that in the

case of the Firehose benchmark set, the kernel is the application.

Batch Mode. When all the input kv-pairs are already available in memory, i.e., when

the input is no longer an incremental stream of records, the state-of-the-art approach for

such merging is GraFBoost. Note that while such batch-mode input may be possible for

47



Figure 3.11: The % performance overhead incurred due to GlobalReduce() (lower is better) is
just over 2% for MetaStrider, when averaged across all workloads.

SpGEMM workloads, it is infeasible for other incremental / streaming applications such

as Firehose, for which only MetaStrider would be applicable. Figure 3.10 shows that in

batch mode, MetaStrider reduces un-core energy consumption by almost 15× and while also

improving performance by 30%, when compared with GraFBoost, thanks to its improved

DRAM behavior and more efficient merger unit. Recall that GraFBoost uses a 16-1 merge

network (and successively merges exponentially increasing batches of records), contributing

to over 94% of its un-core energy.

3.5.4 Sensitivity Analysis

Overhead of GlobalReduce(). The performance overhead incurred due to

GlobalReduce() is just about 2% on average for MetaStrider, shown in Figure 3.11.

Thanks to enhanced Metadata, this is over 5.2× faster than SuperStrider’s Normalize().

Benefit of near data processing. Figure 3.12 shows that even the non-NDP variant

of MetaStrider reduces traffic on the system interconnect when compared to the baseline

by 1.5× and 3.2× for kernels in SpGEMM and Firehose workloads respectively. Upon

deploying NDP, there is a further reduction of over 22× in traffic that is compounded. NDP

helps further reduce energy consumption (without affecting performance despite its slower

logic because the merger unit operation is completely overlapped with DRAM operation).

Speed of Metadata Store. When the Metadata size exceeds area budget, the Metadata

Store needs to be adapted to use a combination of slow-fast memories (Section 3.3.2), or pay
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Figure 3.12: Primary benefit of near data processing (NDP) portrayed via the reduction in bytes of
traffic on the system interconnect (higher reduction is better). Note that MetaStrider reduces traffic
even without NDP.

the penalty of extracting key-ranges via decompression or re-computation (Section 3.3.1).

In either approach, an increase in average access time is the result. However, no signifi-

cant impact (< 0.5%) on kernel speedup was observed when the following representative

access times were simulated across all workloads: (i) Idealized, where there is no over-

head in accessing the store, (ii) SRAM, and (iii) DRAM, where all the Metadata is in an

SRAM/DRAM store respectively.

Real time capability. Since GlobalReduce() is a relatively longer latency operation

when compared to a Lookup(), and that the former is required to guarantee there are

no pending off-path duplicates waiting to be reduced, there is a tradeoff between lookup

accuracy and performance. When GlobalReduce() is omitted, a call to extract the

value for a key κ via Lookup(κ) may yield one of the following cases: (i) Exact match

(record with key=κ found and correct value returned), (ii) Partial match (key found but

incorrect value, prompting incomplete reduction), and (iii) Missing key (key not found).

This is of specific importance to Firehose, where real-time flagging is necessary. In this

context, MetaStrider achieves a favorable distribution of 96.5%, 2% and 1.5% respectively.

When no tree balancing is done, case (iii) is no longer a possibility. Recall that after a

call to GlobalReduce(), both (ii) and (iii) would be eliminated. Benefit of Metadata

decoupling and tree balancing. Decoupling the Metadata from the kv-rows and tree-

balancing independently improve DRAM efficiency. However, tree balancing is practical

only with decoupling, because of the metadata-heavy nature of re-balancing. As a result,
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Figure 3.13: Benefit of Metadata decoupling and tree balancing (lower #ACT is better).
UB=UnBalanced, B=Balanced. ND=Not Decoupled, D=Decoupled.

Figure 3.14: Performance of various fanout/partitioning configurations when averaged across all
workloads, in terms of DRAM rows accessed (lower is better). MLP = (F - 1) * T, where F=fanout,
T=#trees. Performance fundamentally improves with either technique, even in the absence of tree
balancing. Furthermore, GlobalReduce() overhead is significantly reduced when compared to
SuperStrider (Figure 3.3).

MetaStrider deploys a combination of tree balancing and Metadata decoupling. Figure 3.13

shows that a 20% reduction in DRAM ACTs is observed due to AVL-balancing of the tree

(when Metadata is decoupled), upon averaging across all workloads.

3.5.5 Scalability Analysis

This section demonstrates quantitatively the tradeoffs described in Section 3.4.

Partitioning vs Fanout. Figure 3.14 evaluates various design points that combine

partitioning and fanout, while also depicting the scalability of the performance overhead of

GlobalReduce(). Although the height of the tree decreases with increasing fanout, note

that fragmentation increases as each node in an F -tree spans (F − 1) rows, resulting in an

increased average depth per node insertion. Increasing T rather than F is therefore favorable,

assuming sufficient front-end core parallelism is available to scatter to each partition.

Figure 3.15 shows that increasing T rather than F is more favorable from both, an

energy stand-point and performance stand-point. Furthermore, a load balancing hash for

the partitions such as RNS hashing further improves gains. In the figure, note that iso-T
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Figure 3.15: A pareto-style tradeoff analysis in DRAM delay and energy for various combinations
of tree partitioning and fanout, when averaged across all workloads.

frontiers are indicated with green dashed lines and iso-MLP with black dashed lines.

Pipelining. Ideally, one would therefore allocate a partition for every unit of MLP. How-

ever, in a system that is constrained by the number of front-end cores driving MetaStrider,

that may not be possible. Instead, pipelining across banks may be used, although perfect

MLP utilization would be traded off. Figures 3.16a and 3.16b demonstrate that this is still

largely effective in providing near-linear scalability in performance.

Grouping. As the reader may have guessed, the effect of grouping is similar to that

of logically increasing K of the system. This is attractive provided the front-end can

provide batches of K-sorted vectors accordingly. Figure 3.16c shows super-linear benefits

of increasing K when a correspondingly fast front-end core is used.
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(a) Scalability with MLP.

(b) Scalability with cores.

(c) Scalability with K.

Figure 3.16: MetaStrider performance scales near-linearly with available hardware resources using
techniques from Section 3.4. The number of partitions (trees) is always equal to the number of
front-end cores. A sub-1 GHz core frequency is sufficient to drive MetaStrider, unless a large K is
needed.
From Figure 3.15, partitioning is favored over fanout. Therefore, in (a)/(b), partitioning+pipelining is
used.
In (c), the impact of row-grouping (alone) is depicted.
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CHAPTER 4

SORTCACHE: INTELLIGENT CACHE MANAGEMENT FOR ACCELERATING

SPARSE DATA WORKLOADS

4.1 Introduction

Memory architectures traditionally leverage patterned data streams to achieve low latency.

However, this predictability is not present for many critical workloads including sparse data

applications. These workloads have received considerable attention for several decades [96]

because of the unique challenges they pose. As described in Chapter 2, the irregularity of

access in sparse applications comes in two flavors: (i) inherent irregularity in the memory-

access pattern in the algorithm, such as those in graph analytics [40, 41, 42] and HPC

applications [37, 34, 38], and (ii) irregularity imposed by domain experts as a computational

performance optimization. A prime example of the latter is optimizations that leverage

an algorithm’s tolerance to strategically dropping some computations without affecting

the overall accuracy of results. This is particularly common in today’s machine learning

workloads, such as in pruned deep convolutional networks [55, 51, 58].

An important category of data-irregular workloads are moderately-sparse workloads,

wherein the fraction of non-zeros in the input data stream is typically above 1%. Although

these workloads have a high cache hit ratio, they waste cache bandwidth. Modern caches,

such as that in Intel’s Icelake, are capable of reading an entire cache block in parallel [118].

Furthermore, the capacity and bandwidth of on-chip caches has been on the rise and is

for i, j, k = ...:
partial = a[i] * b[j]
c[k] = c[k] + partial // Sparse reduction on c with key=k, value=partial

Figure 4.1: High-level view of sparse reduction, a kernel commonly seen in sparse data applications.
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predicted to continue to increase [119]. Therefore, unless all the words within a cache block

are useful in a given context, a significant amount of cache bandwidth is destined to be left

under-utilized.

Recent research [24, 25, 62, 26, 27] (Chapter 3) has focused on hyper-sparse data

applications, wherein the fraction of non-zeros in the input data stream is well below 1%.

As such, these proposals avoid wasted power and cycles by bypassing the cache hierarchy

entirely, and instead focus on optimizing DRAM row performance for irregular accesses.

However, utilizing these DRAM-centric accelerators for moderately sparse workloads is

inefficient because off-chip accesses are more expensive than on-chip accesses, even if the

high on-chip bandwidth is under-utilized. Furthermore, such approaches are difficult to

implement in practice because processor vendors and memory system vendors are often

separate entities. While memory system vendors are typically commodity-driven (i.e.,

capacity first with performance second), processor vendors are more centrally focused on

application performance.

There are significant advantages to designing an accelerator that augments a general-

purpose processor rather than deploying a standalone accelerator. These advantages come in

the form of ease of adoptability, integration as well as improved generality. Furthermore, the

practice of adopting more and more diverse fixed-function or programmable and specialized

hardware into the traditional datapath has been prevalent and successful for decades, ranging

from acceleration of floating point computations to vector extensions to tensor augmenta-

tions [120]. This chapter makes the observation that intelligent, processor-centric cache

management can improve bandwidth utilization for data-irregular accesses, thereby

accelerating moderately-sparse workloads.

Through an Amdahl’s analysis on real hardware, it was found that each of the sparse

applications analyzed spend a significant amount of time (49% - 90%) performing the

gather-apply-scatter transformation, incrementally, on sparse data. In this transformation,

the index address of the gathered data is commonly identical to that of the scattered data,
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meaning that the access pattern of the gather-apply-scatter transformation is equivalent to

sparse reduction. A high-level view of this sparse reduction is shown in Figure 4.1, which

was originally introduced in Figure 2.1 and described in Section 2.2.

Sparse reductions can be viewed as a stream of (key, value) pairs (kv-pairs), where

the key is equivalent to a matrix index, and the value is its associated non-zero value. An

effective method of maximizing cache bandwidth utilization is to extract as much sequential

locality as possible from this sparse stream of data. This is more commonly done in the

slower, block-structured forms of memory using an extract-by-construction paradigm, such

as B+-trees or vectorized n-ary forests [121, 122, 27]. This research leverages the prior

work to enhance on chip cache subsystems via dynamic sparse-to-dense conversion based

on vectorized binary search trees.

A vectorized binary search tree (VBST), as its name suggests, extends a BST such that

each node in the tree is a constant-sized, sorted vector of kv-pairs. Each node is associated

with a pivot key, and these pivots in turn form a binary tree. Operations on a VBST are at

the granularity of a node. The size of a node is set to be an integral multiple of a cache block

(e.g., 64 bytes) to guarantee that VBST operations maximize the internal and external cache

bandwidth.

Using VBSTs as a framework, this work proposes SortCache, a processor-centric

approach to accelerating sparse workloads by introducing accelerators that leverage the

on-chip cache subsystem. Its primary benefit is accelerating difficult, moderately-sparse

workloads without requiring changes to the processor to memory interface and with minimal

programmer intervention. The key contributions of this chapter are summarized as follows:

1. This chapter proposes and demonstrates the performance advantage of adding Sort-

Cache as a sparse workload accelerator to on-chip cache subsystems.

2. Unlike prior near-memory approaches, SortCache can accelerate moderately-sparse

workloads since it is implemented on chip, closer to the cores.
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3. SortCache is shown to be capable of significantly improving performance while

also reducing energy consumption across a broad range of graph analytics, high

performance computing and deep learning workloads.

Simulation experiments using a diverse set of workloads show that SortCache, when

compared to an aggressive baseline, is able to accelerate vector workloads by 75% on

average, and unvectorized workloads by an average of 2.2×, while also reducing energy

consumption by 31% for the former and 9.8× for the latter.

Recall from Chapter 2 the pervasive usage of moderately-sparse reductions in real-world

applications. This motivates the design of SortCache, as is elaborated below.

Although all of the moderately-sparse applications introduced in Chapter 2 benefit

from the relatively lower latency of the cache hierarchy (vs off-chip DRAM), there is a

significant amount of cache bandwidth that goes unused. Modern processor architectures

(e.g., Icelake [118]) are able to read at least an entire cache block in parallel to feed their

vector function units. In the ideal scenario, when a cache block is read to the function units,

all the words contained in the cache block are usable. However, it is found that only a

small fraction of words in a cache block load are useful for these applications, requiring

multiple such loads per compute instruction on average. This wasted bandwidth requires

masking and stalls in vector function units resulting in lower performance and increased

energy consumption.

Before describing this further quantitatively, note that the evaluation in this chapter

assumes that the moderately-sparse data of interest is already present in the L1, L2 or

L3 (the LLC) caches and that such data does not get evicted from the LLC in the region

of interest. This is supported by the fact that software prefetching and cache tiling are

ubiquitous in modern applications [123, 58, 61].

Figure 4.2 shows that only about 10% of the words present in a cache block are utilized

when the block is loaded for unvectorized workloads, on average. Explicitly vectorized code

(i.e., by an expert programmer [123]) greatly improves the fraction of useful words fetched
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Figure 4.2: Percentage of useful words in a cache block load (higher is better), on average.

per cache block, as seen with Sparse Convolutions, but this still results in less than 50% of

the words being used.

Unfortunately, a majority of sparse applications are not vectorized to start with and con-

tinue to leave performance on the table either without explicit vectorization or a mechanism

to exploit the caches’ internal bandwidth. By paying the smaller cost of smart data re-

organization within a cache, SortCache is able to avoid the greater cost of under-utilization,

irrespective of whether or not the application is vectorized. SortCache is the first work ca-

pable of maximizing cache bandwidth utilization across such a wide variety of sparse

applications, thereby accelerating them. Furthermore, it is able to do so with minimal

programmer intervention.

The remainder of this chapter is organized as follows: Section 4.2 provides an overview

of VBSTs. Section 4.3 describes in detail the design of a VBST-based SortCache architecture.

Section 4.4 and 4.5 present the experimental methodology and empirical evaluations of

SortCache, respectively. Finally, related work is summarized in Section 4.6.

4.2 Extracting Sequential Locality via VBSTs

SortCache re-orders sparse data during gather-scatter operations such that sequential locality

can be extracted by means of intelligent construction. This mechanism is provided via

vectorized binary search trees, which were inspired by the complex n-ary forests proposed
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(a) Initial VBST state with dynamic path chosen upon insertion of next Rinput

batch.

(b) VBST state after insertion and in situ reduction of K kv-pairs.

Figure 4.3: Example of a VBST with K = 4.

in the context of DRAM-based hypersparse accelerators [27]. This section presents the

detailed operations that can be performed on VBSTs.

A VBST is defined by four static parameters: K - the maximum number of kv-pairs in a

VBST node, sz - the size in bytes of each kv-pair, N0 - the (address of) root VBST node, and

op - the reduction (add as defined in Chapter 2) operation. Each node, Ni, logically consists

of three tag fields in addition to the K kv-pairs: the pivot, pi, and the addresses of the left

and right sub-VBSTs. Two invariants are enforced in the construction of a VBST, and these

are fundamentally critical to scalably extracting sequential locality: (i) for each Ni, all keys

in its left sub-VBST are smaller than pi, which in turn is smaller than all keys in its right

sub-VBST; and, (ii) at each Ni, all of its kv-pairs are sorted by key. These are shown in

Figure 4.3.

4.2.1 Insertion

To efficiently enforce the required invariants, a VBST is built incrementally over time. First,

K unsorted kv-pairs (records) are supplied by the input as a batch to the VBST. Second,
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these records are propagated down a dynamic path through the VBST, from root to leaf. En

route, reductions are performed in-situ, and duplicate keys are coalesced with their reduced

value. In the event where there are insufficient repeated keys, a new leaf node is created.

As a result, all the input records end up being written into the VBST in addition to sparse

reductions (and de-duplication) performed on records with same keys. The specifics of

dynamic path selection, leaf creation and how the invariants are maintained are described

via an example below.

Consider the state of the tree as shown in Figure 4.3a. Assume op is the + operation and

the records in the new batch from the input areRinput = [(25, 8), (31, 25), (47, 42), (125, 7)].

The records R0 from the root node N0 are merged with Rinput to obtain a temporary vector

Rtemp = [(13, 20), (18, 22), (25, 3 + 8), (31, 25), (37, 10), (47, 42), (125, 7)]. This merge

operation sorts by key the records in Rinput and R0, while also performing a reduction

operation (according to op) on the values of records with matching keys. After reduction, the

redundant records are compressed out, resulting in a total length of at most 2K for Rtemp.

Next, Rtemp is partitioned, by p0, into two vectors Rlarge =

[(25, 11), (31, 25), (37, 10), (47, 42), (125, 7)] and Rsmall = [(13, 20), (18, 22)]. Note

that Rlarge is of length at least K, and Rsmall is of length at most K. The partitions are

re-adjusted if necessary such that Rlarge has length exactly K. In this example, (25, 11)

is moved to Rsmall to achieve this. Subsequently, Rsmall is written back to N0 as R0. If

the remaining keys in Rlarge are greater than or equal to p0, then the above procedure is

repeated with the right sub-VBST (root at N2) – else, with the left sub-VBST (root at N1) –

with Rlarge as the new “Rinput” to the sub-VBST. This is repeated until Rlarge = φ, which

may require creating a new leaf as part of the last step. In this example, the path taken is

[N0, N2, N5]. Upon leaf creation, at N5, p5 is assigned as the median key of R5, resulting in

the updated state of the VBST as shown in Figure 4.3b.

Insertion of a K-batch visits each level of the VBST at most once, resulting in approxi-

mately lg |Rstream|
K

nodes being visited per insertion, where Rstream is the number of unique
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records in the VBST at the time of this insertion. Observe that as part of the insertion,

sparse reduction is also performed, while also maximizing the number of consecutive words

accessed.

A small fraction of duplicate records may exist outside of the dynamic path chosen, but

these are resolved via a simple depth-first-search after the input has been consumed. Several

applications, including those evaluated in this work, are tolerant to such partial reductions

either due to their approximate nature (i.e., deep learning) or their iterative nature. (This

post-processing step is not described here as it has already been described in Chapter 3.)

4.2.2 Lookup

A Lookup is a gather that is not followed by an apply-scatter. (Note that if a record was

gathered for the sole purpose of apply-scatter, as is the common case in the workloads

evaluated, then that is more efficiently performed via the insertion procedure above.) There

are two variants of lookup seen in applications: random, and ordered.

Random scalar lookup for the value associated with a key κ is achieved via a VBST

walk from the root. If R0[0] ≤ κ ≤ R0[K − 1], then κ, if it exists, exists in N0, and a binary

search within N0 may be performed since R0 is sorted. Else, if κ < R0[0], the scalar lookup

procedure can be performed recursively the left sub-VBST. Else, when κ > R0[K − 1], a

lookup can be performed on the right sub-VBST. Therefore, this visits at most lg N nodes,

where N is the number of nodes in the tree at the time of lookup. This can be improved

further by storing the range and address information of each node in a separate compact data

structure (see Section 4.3.1).

Ordered lookup is more straightforward and efficient. From Figure 4.3, it is apparent

that an in-order, depth-first-search traversal of the VBST starting at the left-most leaf results

in records being read out in increasing key order.
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4.2.3 Deletion

Although not necessary for the workloads evaluated in this work, we briefly discuss deletion.

Batch deletion is useful when certain records need to be “aged out” for capacity constraints,

such as for real-time intrusion detection in cybersecurity. Deleting records can be achieved

by performing the insertion procedure above, except with the values in Rinput set to 0.

During the merge step performed on Rtemp, when a 0-value is detected, the reduction

operation can then omit the associated key(s) entirely, or propagate them to a backup VBST

via a write-back insertion procedure.

Clearly, the insertion procedure above is the most important and expensive VBST

operation. Therefore, the microarchitectural design for SortCache optimizes for insertion.

For the remainder of this chapter, VBST or SortCache operations refer to insertion, unless

otherwise specified.

4.3 Repurposing Traditional Caches for Sparse Reductions

This section presents how the SortCache design implements a VBST. Figure 4.4 shows a

high-level overview of SortCache components from the perspective of a single cache.

4.3.1 Data Layout

Recall that the goal of SortCache is to make effective use of cache bandwidth by maximizing

intra-cache-block locality. Since records within a VBST node are contiguously accessed,

they should not cross cache block boundaries. Therefore, the records of a VBST node are

logically mapped onto an integral multiple of cache blocks. The question of finding the right

integral multiple is addressed below in Section 4.3.4.

The VBST itself is partitioned across the cache hierarchy either statically or dynamically.

Closer inspection of VBST operations reveals that the higher level nodes of the VBST
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Figure 4.4: An overview of a traditional cache augmented with SortCache hardware. For simplicity,
2 nodes are assumed to fit in the cache, and ways, tag compare, pre-decoders, mats etc. are omitted
from the figure.

are more likely to be accessed than the lower (leaf) level nodes. Therefore, nodes closer

to the root must be installed higher up in the cache hierarchy. This can be achieved in

two ways: (i) Static: assign a logical node-index to each node via a top-down topological

sort. Given L1, L2, L3 cache capacities available to SortCache as C1, C2 and C3 bytes,

respectively, and a node size of sznode bytes (sznode can be computed as szrecord ×K), then

assign nodes {N0, N1,...,N C1
sznode

−1} to L1, the next C2

sznode
nodes to L2, and the remaining

to L3. Alternately, there is (ii) Dynamic: perform demand-based block eviction/install to

occur at the granularity of a node. For this, the existing LRU counters are slightly modified

to operate at a node-granularity rather than at a block-granularity basis (recall that nodes

span an integral multiple of blocks). Given the skewed access distribution of the nodes, the

dynamic approach tends to mimic the partitioning strategy described above, while also being

able to account for unexpected regularity in the otherwise irregular sparse input stream.

Note that node-level LRU counter operation is necessary because it is absolutely essential

that all records within a node migrate together. During SortCache operation, due to insitu

reduction, holes towards the end of nodes may dynamically appear and disappear. Using

regular LRU may therefore result in partial eviction, and tracking these would result in more

complexity than using LRU counters that operate at a node granularity would.
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The per-node tag fields (pivot, addresses of left and right children) can be stored in

the cache’s tag store fields associated with the nodes. This is due to three reasons: (i)

the traditional tag bits are unnecessary for the hardware managed kv-pairs, (ii) tag access

in parallel with data access, as is common in traditional caches, offers zero performance

overhead, and (iii) there is sufficient tag storage in traditional caches, as will be explained in

more detail below, offering enough headroom for future SortCache implementations that

may need more tag than that required by the VBSTs described in this work. For example,

consider a typical C1/C2/C3 of 32 KB/256 KB/16 MB (for a total of 16.28125 MB available

for the VBST) and relatively small K = 64. Note that a smaller K results in a larger number

of VBST nodes, requiring more number of bits to encode addresses of children as well as a

higher number of tag instances– thus making this example a worst-case scenario. Assume

szrecord = 4 bytes, the pivot key requires 2 bytes, sznode = 4 × 64 = 256 bytes, number

of nodes N = 16.28125×1024×1024
256

= 66688, which is slightly over 216. In practice, not all of

the cache hierarchy would be available to SortCache as the non-reduction portions of the

application would require some caching. Therefore, 16 bits (2 bytes) are sufficient to address

all nodes for this example. From an implementation perspective, the child addresses are

not stored as node indices, but are encoded according to their 16-bit geometrical coordinate

locations L in the cache hierarchy. L is of the form {cacheId, indexId, wayOffset}.

With 8-way caches, a 3-bit wide wayOffset suffices. The width of indexId increases

with cache size, i.e., from L1 to L2 to L3. The remaining MSB bits form the cacheId

field, to help decode whether the node is in L1, L2 or L3. This results in the tag fields

requiring 2 (pivot) +2 × 2 (child addresses) = 6 bytes per node, or 32×1024
256

× 6 = 768

bytes, 256×1024
256

× 6 = 6 KB, 16×1024×1024
256

× 6 = 64 KB for the tag fields of L1, L2 and L3

respectively. Assuming 8-way caches, these are much smaller than the available traditional

tag storage (2.875 KB, 21.5 KB, 1.15625 MB respectively).
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4.3.2 Merge Hardware

In order to maintain the two VBST invariants for efficient operation, efficient merge is a

requirement (Section 4.2). Therefore, SortCache relies on explicit hardware support for

merging the records of the input batch Rinput, with those of a given node Ri (R0 to start

with).

Recall that Ri is always sorted, and the intermediate results Rtemp are also sorted. This

means that for the majority of operation, merging takes two sorted vectors as input, which

is significantly more efficient than generic sorting. However, Rinput is unsorted as no such

data transformations are assumed to be applied by the main application. Thus, SortCache

incrementally preconditions Rinput (i.e., sorts an input batch, not the entire input) such that

further merging is more efficient.

One method to sort unsorted data is to break it in two and repeatedly merge it. This

allows the same merge hardware used for merging sorted vectors to be used to sort Rinput,

with more iterations. If the merge hardware is replicated, preconditioning on a given input

batch can be done in parallel with a preceding series of merge operations (resulting from

the previous input batch). Such replication results in lower hardware necessary than having

a dedicated sorter, without lost performance. This is because a single preconditioning is

typically followed by several downstream merge operations, potentially down to the leaf

node, enabling preconditioning and subsequent merging to be pipelined.

Two variants for the underlying merge hardware are now presented, followed by the

control logic. While the latter is distributed across the cache controllers, the merge hardware

is assumed to be close to the L1 cache controller to save power as it is more likely to access

records in L1 than in L2/L3.

Linear Merge

Since the fundamental merge operation is performed on two sorted vectors, it can be done

in linear time. For example, say Rinput = {(1, 1), (2, 24), (5, 42), (10, 35)} and R0 =
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Figure 4.5: SortCache serial merge and preconditioning hardware.

{(2, 5), ...}. First, the keys from (1, 1) and (2, 5) are compared. Since 1 < 2, (1, 1) is

written out to Rtemp and the keys from (2, 24) and (2, 5) are compared. Next, a reduction is

performed and (2, 24 op 5) is written out to Rtemp. This process is repeated, advancing a

record from either vector until all records are consumed.

Rinput is buffered in a 2K-record sized FIFO (called BUF) with two input and one

output port. BUF also doubles as the real estate for Rtemp, with an advancing head pointer

to separate the two. Recall from Section 4.3.1 that R0 is housed in a K-dependent number

of contiguous cache blocks. Post the wordline, bitline and sense-amplifier operations, the

word select latch (WSL) has a cache block’s worth of records, which are read one-by-one

by the ALU (i.e, compute unit that performs comparison and reduction op) and populated

into BUF (see Figure 4.5). Therefore, WSLread/BUFread, ALU and BUFwrite form pipeline

stages that can operate without stalls for the lifetime of the current cache block, after which

the entire process is repeated. At design time, SortCache examines the latencies of each

stage and generates a 2-stage or 3-stage pipeline accordingly. At the end of each node-merge

step, Rsmall is written back from BUF back to the most recently read cache blocks.
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Figure 4.6: SortCache parallel merge and preconditioning hardware with C = 4 as an example.

Parallel Bitonic Merge

Since the WSL loads a cache block in parallel, rather than serially reading from WSL,

reading and merging in parallel using a bitonic merge network is possible. This is a classic

power-performance tradeoff between the two approaches.

The bitonic merge network takes two K-record sized sorted vectors and passes them

through a C-wide and lg C-deep bitonic network of ALUs, where C < K (see Figure 4.6).

The records are read in lg K strides of K, K
2
,..., 1. For each stride, C records are routed to

the lg C-deep network in a depth-wise pipelined manner.

Preconditioning of Rinput can be done by repeating the above operation, with 1 stride in

the first iteration, 2 strides in the second iteration, ..., lg K strides in the final iteration.

Control Logic

The control logic of SortCache is responsible for two major class of operations: (i) SortCache

mode macro-level semantics, such as routing records to the appropriate cache (Section 4.3.1),

setting/resetting node-level LRU/install/evict logic, way-partitioning and lazy writebacks
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loop:
MUL R_value, R_a, R_b
LD R_tmp, [R_c], offset
ADD R_tmp, R_tmp, R_value
ST R_tmp, [R_c], offset

Figure 4.7: Pseudo-assembly for the sparse reduction kernel.

loop:
MUL R_value, R_a, R_b
MOV R_key, offset2
RED R key, R value

Figure 4.8: The RED instruction instructs SortCache to perform gather-apply-scatter. offset2 is
different from offset as it has to account for storage of keys alongside the values (rather than in a
separate vector such as in CSR). If size of key and value are same, offset2 = 2*offset1.

(Section 4.3.3); and, (ii) VBST operation micro-level semantics, such as routing records

between cache blocks and merge networks above and dynamically deciding the root-to-leaf

path to be taken after each node-merge (Section 4.2).

4.3.3 System Integration

SortCache operation can be triggered using a simple RED Rkey, Rvalue instruction. The

sparse reduction kernel introduced in Figure 4.1 can then be transformed from the pseudo-

assembly in Figure 4.7, to that in Figure 4.8 by a compiler or programmer. Pragma-style

programmer annotations specify the static VBST parameters (K, sz, reduction operator),

base pointer and scope of reduction, as shown in Figure 4.9.

Although sparse reductions account for the majority of cache bandwidth usage, ap-

plications may need to retain a portion of the cache capacity for other memory accesses.

#pragma SortCache INIT K=256, sz=4, op=’+’
#pragma SortCache RED base_pointer=c
for i, j, k = ...:
partial = a[i] * b[j]
c[k] = c[k] + partial

...
print(c)
#pragma SortCache END base_pointer=c

Figure 4.9: Programmer annotations to leverage SortCache.
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Automatically determining the general fraction of cache capacity required for regular mem-

ory accesses is beyond the scope of this work. However, for the memory footprint and tile

sizes in the workloads evaluated in this work, it has been found that reserving the L1, half of

L2 and half of L3 for sparse reductions is sufficient to prevent L3 evictions for the VBST,

while also not introducing regular memory accesses onto the critical path of the application.

Reserving portions of a cache can be done via static way-partitioning or address-based

set-partitioning. In this thesis, all 8-ways of L1 and the last 4 ways of 8-way L2/L3 caches

are assumed reserved for VBSTs (during SortCache operation). As the sequence of node

accesses is available only one node at a time for a VBST, all the cache MSHRs are available

to the other portions of the application (outside of the sparse reduction operation).

On encountering the first RED instruction, the cache hierarchy is transformed into

SortCache mode, wherein the modified node-level LRU counters and install/evict logic are

used for the reserved portions of the cache. Lazy flush (dirty writeback or clean invalidate)

of L1 and the reserved ways of L2/L3 are also performed when nodes are installed into

the cache. At the end of a RED region, rather than reverting to traditional cache mode

immediately, contents of the reserved portions are retained so that downstream lookup

operations can be performed on the VBST directly (Section 4.2.2). If no more operations on

the reduced sparse data are necessary, as can be signaled by the SortCache END pragma,

reservations are lazily invalidated and released for regular cache operation.

4.3.4 Choosing K

Recall from Section 4.2 that increasing K, the number of kv-pairs in a node, reduces the

average VBST depth and therefore increases performance. However, it also increases the

amount of data to be merged on a per-node basis as well as the preconditioning (pre-sorting)

of the input batch of records for efficient subsequent merging (Section 4.3.2).

Formally, the number of serial comparison operations grows as O(Klg K) for precon-

ditioning and O(K) for linear merge at a node. As there are (ideally) O(lg Rstream

K
) nodes
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that need to be visited per input-batch (Rstream is the number of unique records already in

the tree at time of insertion), the cost to inserting a batch of records may be viewed, to a

first order, as O(Klg K +Klog Rstream

K
). Upon performing a differential analysis over K,

and assuming that the pre-conditioning is overlapped with (previous) merge series, it can be

seen that a higher Rstream favors a higher K for high performance.

However, from an energy stand point, a higher value of K is more detrimental to the

log-linear bitonic network when compared to the linear merger network. As such, the

evaluations in Section 4.5.5 find that the linear mergers favor a higher K than the bitonic

network.

4.4 Evaluation Methodology

4.4.1 Sparse Applications Evaluated

A wide variety of sparse data applications are simulated in this study, with multiple inputs

used for each workload category introduced in Chapter 2, SparseConv, BFS, SSSP, PageRank

and SpGEMM. These are described here.

SparseConv: A caffe-based [124] implementation of pruned, deep convolutional neural

networks, known as SkimCaffe [123, 58], was used as the framework for real-world sparse

convolutions. Each of the four sparse CNNs that resulted from the pruned AlexNet [57]

topology were considered (the one dense CNN was not included), with inputs from the

ImageNet ILSVRC-2012 dataset [125] provided to the network. Note that, among the

evaluated workloads, this is the only category where the framework included carefully

hand-optimized vectorized code done by domain experts.

BFS, SSSP, PageRank: Graphmat [61], an SpMV based engine, was used as the

framework for graph analytics.

SpGEMM: The most work-optimal algorithm for SpGEMM, outer-product [65], was

used. For the SpMV and SpGEMM based workloads, the input matrices were selected from

the SuiteSparse repository [126]. This was guided by prior sparse research [65, 88, 91, 92]
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Table 4.1: Baseline Configuration

Parameter Value
Front-end Infinite issue width

Core Perfect memory disambiguation
Cache Policy Inclusive, LRU replacement
Block Size 64 bytes
Granularity 1 byte to 64 bytes per access

L1
32 KB, 8-way, 10 MSHR [118]

2 Read-ports, 1 Write-port
L2 256 KB, 8-way, 20 MSHR
L3 16 MB

and by the goal to demonstrate SortCache on a wide spectrum of domains.

Table 2.1 summarizes several key characteristics of the workloads evaluated. Most

notable is the relatively high Amdahl’s percentage of sparse reductions across multiple

domains. The Amdahl’s analysis was performed via native execution on a 2.3GHz, 4-issue

AMD Opteron 6276 with 2MB LLC per core.

4.4.2 Simulation Infrastructure and Configurations

The sparse reduction kernel was evaluated using a cycle-accurate, trace-based simulator.

Timing, power and area for the caches (baseline and SortCache) and buffers (SortCache) were

modeled in detail using CACTI [112]. Those for the computational logic (SortCache) were

modeled using 15nm-based RTL synthesis results from Synopsys Design Compiler [127]

using the FreePDK15 standard cell library [128].

Recall that SortCache focuses on extracting maximum cache-hit bandwidth. To isolate

this, the simulator models a front-end core with infinite issue width and perfect memory

disambiguation, connected to a typical cache hierarchy. For the baseline (Table 4.1), the L1

has 1 write-port and 2 read-ports (true dual porting) with a 64 byte wide interface, as used

in modern vector processors such as Intel’s Icelake [118]. For SortCache (Table 4.2), these

parameters are retained, except that the caches have only 1 read-port (and 1 write-port) each.

Specifics of cache partitioning/reservation for SortCache operation has been described in
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Table 4.2: SortCache Configuration

Parameter Value
Cache Policy Static, Dynamic (Section 4.3.1)

Record Size (sz) Application dependent
Records per Node (K) 64 - 8192

Node Size K × sz bytes
Bitonic Network Size (C) 2 - 64

Reduction op +, min, predicated assignment
Preconditioning and Linear-Linear, Linear-Bitonic,

Merger Unit Architectures Bitonic-Bitonic

Figure 4.10: Speedup of Sparse Convolutions and SpGEMM vs the baseline.

Section 4.3.3.

To simulate SortCache, the frameworks mentioned above were modified according to

Figure 4.9 to generate a dynamic RED instruction stream. Both static and dynamic VBST

node placement strategies (Section 4.3.1) were evaluated. K was varied from 64 to 8192

(log-scale). (Exploring higher K values would have caused a node to not fit entirely in L1,

whereas lower K values would have resulted in trees with too many levels to be practical.)

The record size (sz) was determined based on the desired key range that to be encoding.

Most workloads require 4 bytes in practice.

This research was supported in part through research cyberinfrastructure resources and

services provided by the Partnership for an Advanced Computing Environment (PACE) at

the Georgia Institute of Technology, Atlanta, Georgia, USA [129].
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Figure 4.11: Speedup of BFS, SSSP and PageRank vs the baseline.

4.5 Experimental Results

4.5.1 Finding universally-beneficial SortCache configurations

Before presenting results, details of the SortCache configuration that benefits all of the

workloads while not being over-fitted for any particular workload, are presented.

First, in terms of the merger approach, the linear merger was sufficient to extract

significant performance benefits for BFS, SSSP, PageRank and SpGEMM based workloads.

The more powerful bitonic merger was used for SparseConv, as it had to compete against a

more aggressive baseline, which, as has been discussed above, benefitted from optimized

hand-vectorized code. Thus both mergers are included with SortCache.

Second, both the preconditioning unit and the merger unit were assumed to be identical

(linear-with-linear, bitonic-with-bitonic), as increasing design complexity with heterogenous

units did not yield any significant benefits.

Third, a high K = 8192 was set for the linear merger and a low K = 128 was set for

the bitonic merger (with C = 32) (for more details see Sections 4.5.5, 4.5.6).

Finally, the dynamic node placement strategy (Section 4.3.1) was used as it resulted in

the most number of higher-level cache hits (for more details see Section 4.5.7).

4.5.2 Performance Results

Figure 4.10 presents SortCaches speedup over the baseline, both for the sparse reduction

kernels and the entire application for SparseConv and SpGEMM. Figure 4.11 presents those
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for BFS, SSSP and PageRank.

Referring to the results, all of the workloads achieve at least a 15% speedup, with the

exception of SpGEMM/rotor (6%). This is because the optimal K for rotor is 2048, which

would have yielded a 20% speedup. In general, each of the workloads have their own

optimal point for K, depending upon the nature of the input, or more precisely in this case,

on the density distribution of the resulting VBST nodes. When reduction (repeated keys)

manifests uniformly over time (batches) and space (keys), a large fraction of VBST nodes

result in empty space in them, implying that a lower K would have been more efficient.

There are two solutions (whose details are beyond the scope of this work) to improve

the performance of such tail workloads: (i) Periodically “defragment” the VBST; and, (ii)

Leverage compiler assisted inspector-executor strategies [130] in determining the optimum

K for a given phase of the application.

4.5.3 Energy Results

Using the same overall SortCache configuration as above, Figure 4.12 shows the average

normalized energy across workloads. The linear merger based design (used for BFS, SSSP,

PageRank, SpGEMM) offers an order of magnitude lowering in energy consumption. The

bitonic network used for SparseConv is also able to significantly lower energy even though

it competes against the hand-optimized baseline.

The overheads due to accessing the tag fields, the compute logic and the buffer are

insignificant in general (Figure 4.13). Moreover, because of effective use of cache bandwidth

(Figure 4.2), significant gains come from lower cache energy. For the bitonic network, there

is a strong correlation between its relatively higher energy consumption (as compared to the

linear merger) and its heavy internal buffer usage.
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Figure 4.12: SortCache energy normalized to the baseline (lower is better).

Figure 4.13: Breakdown of energy consumption of each SortCache component.
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Figure 4.14: Impact of K on performance

4.5.4 Area

The bitonic network requires an area of 0.26 mm2, of which 0.01 mm2 is needed for the

network of ALUs. This, similar to the energy consumption, speaks to the buffer-heavy

nature of this design. The linear merger requires an area of 0.14 mm2 (which is almost

entirely due its BUF structure). As these networks are duplicated to perform pipelined

preconditioning, a total area overhead of 0.79 mm2 is required. This is under 5% of that of

the cache hierarchy.

4.5.5 Impact of K

As discussed in Section 4.3.4, increasing K tends to improve performance since it leads

to fewer nodes accessed per insertion, thanks to a shallower VBST. However, the cost for

increased K is a higher preconditioning and node-merge overhead. Given the range of K

explored (Section 4.4.2), the benefits of the former outweigh the costs of the latter for the

linear merger, as seen with the BFS, SSSP, PageRank and SpGEMM based workloads in

Figure 4.14.

However, for a similar balance to be achieved with the bitonic merger, the network

throughput must be increased for higher values of K. A higher C improves the parallelism

within the network, but stresses the already buffer-heavy design. With C = 32, an initial

performance improvement is seen when K is increased from 64 to 128 due to a shallower

tree, but this rapidly drops as K is increased further due to higher node-merge latency.
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Figure 4.15: Impact of bitonic network size on performance.

4.5.6 Impact of the Bitonic Network Size (C)

Figure 4.15 shows the average performance improvement relative to the baseline for Spar-

seConv, as a function of bitonic network size.

As discussed above, increasing C increases the parallelism available in the bitonic

network. Initially, this provides performance benefits (at increased power) since a wider set

of ALUs are able to operate in parallel. However, beyond C = 32, the performance quickly

tapers off because of the routing and output buffers becoming bottlenecks. Another way

of viewing these buffers is through the lens of a crossbar-like structure that routes records

to and from the C ALUs. For these reasons, the sweet spot of C = 32 has been used for

SortCache. A more complex design that deploys a hierarchical bitonic network (i.e., a merge

tree of smaller bitonic networks) may be a scalable solution, but at higher cost.

4.5.7 Impact of Node Placement and Merger Replication

In deciding where to install a newly-created leaf VBST node in the cache hierarchy, Sec-

tion 4.3.1 introduced using either a dynamic node-LRU based approach or a static approach

where topologically higher nodes were placed higher in the cache hierarchy. A hybrid is

also possible where only the topologically higher few nodes are placed in the L1, while L2

and L3 would resort to using a node-level LRU behavior, similar to the dynamic approach.

While the static and hybrid approaches would benefit a few workloads, the dynamic
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Figure 4.16: Effectiveness of VBST node placement strategy in terms of percentage of accesses to
the cache hierarchy being L1 hits (higher is better).

approach is better overall. This is because VBST access paths are non-uniform. Although

the static approaches make strong intuitive sense in that the topologically higher nodes are

more likely to be accessed, once the access path lengths increase, the lower nodes need to

be accessed (and often, for certain input patterns). The dynamic approach is able to promote

these “hot” lower nodes in addition to ensuring that a majority of the topologically higher

nodes (especially the root node) that are accessed most frequently remain in the L1, as seen

in Figure 4.16.

It can further be observed that the L1 is able to satisfy a vast majority of SortCache

accesses on average. The exception is SparseConv, which requires smaller node sizes

because of its more expensive bitonic merger. As a result, this work replicated neither the

linear nor the bitonic mergers. However, if there is headroom in the area budget, replicating

these mergers at lower levels of the cache would reduce the energy cost of intra-chip data

movement.

4.6 Related Work

Compiler and profiler assisted transformations of data to improve cache locality have been

researched for over two decades [131, 132]. Several works have repurposed the cache real

estate as a software-managed scratchpad memory, to reduce redundant data transfers in

the context of CPUs, GPUs and embedded systems [133, 134, 135, 136]. Hardware-based
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transformations of cache data layout to improve locality have also been proposed, in the form

of reducing conflict and capacity misses using alternate indexing and address transformations

in traditional caches [137, 31]. However, these works view data reorganization from the

perspective of dense data streams.

On the other hand, transformation-based hardware acceleration of sparse data streams

has gathered significant interest in the near-data (DRAM) processing community [27, 24, 26,

62, 138, 25]. Most of these approaches bypass caches and target hyper-sparse applications,

and are relatively harder to adopt by virtue of requiring off-chip computation. Two recent

notable exceptions are HTA [139] and SPiDRE [75]. These approaches extract cache locality

and do not require off-chip computation.

HTA targets data-irregular accesses that arise from hash tables, by making use of

a cache-conscious data layout. This is similar to SortCache in that sequential locality

is leveraged. However, no global ordering among the cache blocks is necessary as the

block index is provided directly by the hashing function, and significant research has gone

into designing hashes that minimize collisions in hash table based applications such as

databases [140], genomics [141], etc. Unfortunately, the same cannot be said about the

sparse workloads of interest in this paper, thus requiring a dynamic approach such as VBSTs.

SPiDRE performs LLC prefetching via a programmer-specified rearrange function, therefore

improving cache hit ratios and also useful cache bandwidth. Although this improves sparse-

gather performance, sparse-scatter is not accelerated. However, SortCache can benefit from

SPiDRE as it can potentially accelerate the front-end generation of partial products for

SpMDM, SpMV and SpGEMM.

Another class of cache-based acceleration has gained traction in the recent past, in the

form of in-cache [76, 77, 78] or near-cache computation[142, 143]. These approaches do

not transform the data layout but instead focus on performing useful computation via the

cache hierarchy. Such computation either leverages emerging SRAM circuit technology

(“bitline computing), or introduces a co-processor to the cache hierarchy. Fundamentally,
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bitline computing [80, 81] activates multiple word-lines in parallel and infers an and (or nor)

operation by sensing the shared bitline (or its complement). SortCache has the potential to

benefit from such parallel activations as it can accelerate the key-compare and value-reduce

operations, thus making the preconditioning and merge units more efficient.

Finally, recently proposed research, known as PHI [63] is an orthogonal approach to

the sparse reductions problem. In particular, PHI focusses on push-based updates in the

context of graph analytics, with an emphasis on reducing traffic to main memory rather

than maximizing cache bandwidth utilization. It successfully leverages temporal locality

in keys via coalescing, i.e., by treating portions of the cache hierarchy as a write buffer.

Traffic to main memory is further lowered by batched updates. However, during their

in-cache update phase, which is fundamentally scalar in nature, unless the stream of sparse

reductions has significant sequential locality to begin with (which, according to Figure 4.2,

is not common unless the program was explicitly vectorized), PHI is unable to effectively

utilize the wide cache bandwidth available in modern processors, which is where SortCache

excels. Therefore, PHI and SortCache, when used together can benefit from each other. Both

approaches reduce synchronization overheads as multiple cores can afford stateless offloads

of their sparse scatters. As an alternative to software tiling, SortCache can lean upon PHI

to reduce memory traffic. PHI can lean upon SortCache for more efficient in-cache sparse

updates.

4.7 Summary of Mechanisms to Accelerate Sparse Reductions

Several mechanisms have been proposed in Chapters 3 and 4 to accelerate sparse data

applications. These are summarized and categorized visually in Figure 4.17. First, there are

those mechanisms that are fundamentally necessary and central to obtaining performance

and energy efficiency. Second, there are several algorithmic, architectural, platform-specific

as well as implementation-oriented optimizations that have also been proposed.

At a higher level, a key takeaway from this thesis is that explicit, intelligent and easily-
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Figure 4.17: Overview of necessary mechanisms and optimizations proposed in Chapters 3 and 4 to
accelerate sparse data applications.

integrateable hardware-assisted data handling is vital to lowering data movement through

the memory hierarchy. As a result, significant improvements to performance and energy

efficiency are obtained for sparse data applications, that are otherwise difficult to accelerate

in traditional systems.
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CHAPTER 5

COMPUTATIONALLY ERROR-TOLERANT POST-MOORE PROCESSING

5.1 Ultra Low Power Device Technologies

Dynamic power scales proportionately with frequency and with the square of operating

voltage, therefore, lowering Vdd is more beneficial.

Although the theoretical lower limit for Vdd for inverter functionality is 2kT
q

(or about

36mV ) [12, 13, 14], there are challenges to operating at this level. For barrier modulated

transport, a fundamental physical limit exists, known as Boltzmann Tyranny. The following

explanation borrows heavily from a recent PhD thesis in this area [11]. To increase the drain

current ID by an order of magnitude at room temperature, the gate voltage VG needs to be

increased by at least kBT ln10 ≡ 60mV , where kB and T are the Boltzmann constant and

the absolute temperature, respectively. The lower limit of the subthreshold swing S, defined

as ∂VG

∂log10ID
is, therefore, 60 mV / decade. As a result, to maintain a good on-off ratio of

the current, ˜1V needs to be applied at the gate. Despite significant engineering put into

transistor design of “steep-sloping” devices, the limit of 2.3kBT
q

is a fundamental limit.

In order to overcome this limitation so that Vdd can be successfully lowered, two ap-

proaches to “re-invent” [144, 16, 145, 146] the transistor have been proposed:

1. Change transport mechanism. Examples include band-to-band tunneling field effect

transistors (TFET) [147, 148], impact ionization metal oxide semiconductor transistors

(IMOS) [149] and nano-electro mechanical (NEM) switches [150, 151].

2. Change electrostatic gating such that the surface potential of the transistor increases

beyond what is possible conventionally. Such active gating relies on the ability to

drive the gate oxide to a non-equilibrium state such that its capacitance is negative.

Mathematically, S = ∂VG

∂log10ID
= ∂VG

∂VS

∂VS

∂log10ID
, which can be abstracted to a first order
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(a) Changing transport mechanism is a
promising approach to going below the 60
mV/decade threshold.

(b) Negative capacitance can raise the
surface potential above that of the ap-
plied voltage.

Figure 5.1: Next generation devices concepts [11].

into the expression (1 + CS

Cox
).(“60”). In order to lower S below 60, the two approaches

above seek to lower “60” or to cause Cox < 0, respectively (Figure 5.1).

These next generation devices are fast switching even at few tens of millivolts, but as

a result, are vulnerable to thermal noise perturbations. This translates into intermittent,

stochastic bit errors in logic. With signal energies approaching the kT noise floor, future

architectures will need to treat reliability as a first class citizen, by employing efficient

computational error correction.

5.2 Computational Error Correction

5.2.1 Overview

We first classify various approaches to computational error correction into two broad

categories:

1. Temporal Redundancy. This approach is based on the hypothesis that the probability

of transient errors that occur at the same place to have temporal multiplicity is very

low. In other words, a soft error occurs infrequently at the same device, and as such,

repeated measurements in some manner would serve as an indicator to the correct
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computation.

2. Spatial Redundancy. This approach is based on the hypothesis that the probability of

multiple identical computations to all be in error at the same time is very low. In other

words, by replicating a computation, any error in a small fraction of the replicas can

be masked / overpowered by the other correct replicas.

These principles, it turns out, are fundamental to any sort of error correction including

computation (ex. arithmetic), storage (ex. memory) and transmission (ex. networking).

Some proposals favor spatial redundancy over temporal redundancy, some vice versa, and

some employ both, depending upon the target fault model and environment.

Von Neumann [152] was among the first to propose using redundant components to

overcome the effects of defective devices. He introduced the now widely used technique

of Triple Modular Redundancy (TMR), which essentially uses three devices instead of one

and uses a majority voter to infer a correct output. To note here is that such a mechanism

can correct a single error (meaning that at least two of the three devices are not in error),

or detect most double errors (where at least two devices are in error, and their outputs are

non-identical). Even today, variants of such a (single error correct, double error detect)

SECDED error model are in use.

Also proposed in his work were R-fold modular redundancy (RMR), which reduces

to TMR when R=3; Cascade-TMR, which is essentially a multi-level TMR (ex. 3 sets of

TMR modules and an overall voter) and NAND multiplexing. The latter replaces each

processing unit with multiplexed units containing N lines for each input and output; the

multiplex unit itself has two stages: executive stage (performs the function of the processing

unit, in parallel) and restorative stage (reduces degradation caused by the executive stage;

acts as a non-linear output amplifier). Years later, Nikolic et al. [153] provide a quantitative

comparison of these techniques for fault coverage and area overhead necessary. In addition,

they also evaluate a reconfiguration technique that uses Configurable Logic Blocks (CLBs)

to create fixed function atomic fault tolerant blocks, and clustering them to achieve global
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fault tolerance.

While these techniques rank high in terms of robustness, they unfortunately, require

a very significant overhead in terms of area and energy. It is intuitive that by trading

performance, it should be possible to keep component overhead within reasonable limits to

achieve reasonable reliability. Arithmetic codes are designed to do just that. We borrow the

following classification of arithmetic codes from Wakerly [154].

1. Separate vs Non-separate.

(a) Separate: The encoding of a datum X is the concatenation of X and a check

symbol computed from X by the function C. The encoding of X is given

by f(X) =< C(X), X >. Further, upon arithmetic transformation, the data

and check symbols are non-interacting. For example, f(X + Y ) =< C(X) ∗

C(Y ), X + Y >.

(b) Non-separate: The encoding of a datum X is simply C(X), with arithmetic

transformation being obtained by a single binary operation on the encoding. For

example, f(X + Y ) = C(X) ∗ C(Y ).

2. Systematic vs Non-systematic. For systematic codes, the encoding of a datum X has a

subfield which equals X .

3. Homomorphic vs Non-homomorphic. For homomorphic codes, the data and check

symbols are transformed using the same function.

In general, non-separate codes are generally non-systematic (although exception, i.e.,

systematic non-separate codes exist [155]), and that separate codes are also generally

homomorphic (again, exceptions exist [154], however, multiplication is not supported and

issues with implementation exist).

A typical example of a separate code is a residue code. In fact, it has been observed that

all separate codes are equivalent to residue codes [156].
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The remainder of this section is organized as follows. We first introduce a class of codes

known as AN codes, then move onto summarize a large class of various parity predicting /

circuit implementation dependent techniques and finally describe residue codes, which form

the basis for the first part of this thesis.

5.2.2 AN codes

A typical example of non-separate codes is the AN code [157]. The check function consti-

tutes a simple multiplication by a “check base” A:

f(X) = AX; f(X + Y ) = AX + AY

As such, the code is valid under addition and subtraction, with possible error detection/-

correction. The crux of such an algorithm relies on the observation that the sum/difference

is also a multiple of A. Error detection is relatively straightforward as it just has to verify

that the sum is divisible by A. However, error correction involves division by A and a series

of subsequent subtractions and bit shifts, the count of which depends upon the number

in question; resulting in a multi-variable-cycle latency for error correction, rendering it

difficult to design efficient computers around. Years later, Liu [158] proposed a multi-bit

error correction for the AN code, albeit at a much higher cost.

Failure to support multiplication notwithstanding, AN codes also run the danger of

silent data corruptions due to the inherent possibility of undetected errors (for example, any

erroneous number can pass as correct if it happens to be a multiple of A). For these two

reasons, proposals to augment AN codes have been made. Forin [159] introduced static

signatures (B) to augment the encoding as follows:

f(X) = AX +BX , 0 < BX < A can be arbitrarily chosen for each X .

As such, upon addition of numbers X and Y , the sum modulo A should be BX +BY .

To detect use of potentially stale (although correct) registers, a timestamping mechanism

was further augmented, known as ANBD encoding:

f(X) = AX +BX +D, where D indicates version.
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Needless to say, for both ANB and ANBD coded systems, software support can be

leveraged to hasten error detection by static assignments of signatures and pre-computation

of their summations for stack variables. Further, recent work [160] extends this idea to

employ signatures at the basic block level to verify dynamic control flow (including non-

external function calls) wherever possible, by having instructions communicate counter

values to a watchdog entity.

Yet other approaches suggest efficient encoding for multiplication and compiler tech-

niques [161, 162]. However, no error correction scheme is proposed and fail-stop is the

default mode of operation.

5.2.3 Micro-architectural / ISA independent techniques

A different category of ’codes’ exists in that they are circuit dependent. Their main idea is

to predict parity transformation with arithmetic operations and/or careful addition of spatio-

temporal redundancy. This constitutes a relatively large body of work, and the following

text strives to provide an intuitive treatment and coverage of such approaches.

Sun et al. [163] combine spatial redundancy and temporal redundancy to propose an

error correcting parallel adder. They realize a Kogge Stone prefix tree using two Han-

Carlson trees, and simply duplicate the generate/propagate circuitry. For elements off the

resulting critical path, temporal redundancy is utilized. As far as adders are concerned, their

approach is efficient as it is reported to correct 93.76% of soft errors with an area overhead

of 12.23% and a delay overhead of 6.41%. However, no such scheme is presented by them

for multipliers.

We now review the cost of several competing approaches in chronological order.

Johnson et al. [164] examine exploitation of spatial, temporal and hybrid techniques for

the purposes of detection. They note that duplication with comparison incurs over a 100%

area overhead. In certain cases, using alternating logic (using compliments) is more efficient

w.r.t. hardware cost, however, making a function self-dual may require a 100% increase in
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area. Finally, for the purposes of temporal redundancy, recomputing with shifted/swapped

operands involve negligible area overhead (extra hardware needed only to compute input

encoding and output comparison). However, the latter two approaches incur over a 100%

increase in latency. While these early implementation seem to be high-cost, especially given

that no correction is performed, the ideas are fundamental and are refined over the years.

Hsu et al. [165] propose a temporal redundancy technique that utilizes spatial redundancy

in a clever manner. TMR is emulated but hardware overhead is relatively lowered by using 2

x n
3

adders/multipliers and using temporal redundancy when an error is detected, to achieve

correction. Their approach incurs a hardware overhead of 25% and a delay penalty of 108%.

Nikolaidis [166] propose efficient parity prediction techniques to achieve (detection

only) low area overhead of 17% for carry lookahead adders. As noted by the residue based

detection work of Pan et al. [167], Nikolaidis et al. propose [168] using differential logic

circuits to implement each cell of array-based multipliers, and, also propose [169] output

duplicated Booth multipliers, again, for detection alone. The latter was improved upon

by Marienfeld et al. [170] to achieve a hardware overhead of 35% for detection in 32 bit

multipliers.

Peng et al. [171] develop a mechanism wherein their adder stops upon error detection,

and using a deadlock detector, reconfigure the adder. They are able to handle single faults

in their 32 bit adders with an 81% area overhead, 140% for 2 faults and 211% for 3 faults.

Vasudevan et al. [172] develop error detection in a carry select adder, with an area overhead

of 20%.

Rao et al.[173] propose exploiting inherently redundant computation paths in carry

generation blocks of carry lookahead adders to identify a faulty block. For the generator and

propagator circuitry, time redundancy is used via rotated operands. Ghosh et al. [174] apply

temporal redundancy to the Kogge-Stone adder based on the observation that even and odd

carries are independent. In their two cycle addition technique, first, one of the correct set of

bits (even/odd) are computed and stored at output register. Second, operands are shifted by
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one bit and the remaining sets of bits (odd/even) are computed and stored.

Rao et al. [175] further propose spatial redundancy for specific parallel prefix adders to

achieve fault tolerance. Their design results in area overheads of 85%, 90% and 63% for

Brent-Kung, Kogge-Stone and their hybrid implementations respectively.

Valinataj et al. [176] distribute TMR to protect carries alone, the premise being that

correct carries are sufficient to generate correct output parities for both addition and mul-

tiplication. For a 32 bit carry lookahead adder and a 32 bit wallace tree multiplier, their

technique requires an area overhead of 115% and 240% respectively. Krekhov et al. [177]

propose parity prediction for the purposes of multi-bit error correction for addition, with

roughly a 100% area overhead. Mathew et al. [178] propose parity prediction for multi-bit

error detection and correction in Galois Field multipliers with over 100% of area overhead.

Keren et al. [179] observe that not all 2k outputs of a k-bit output are generally valid

outputs for a given combinational circuit. Instead of using redundancy bits, the input to

the checker is created using the output bits and the input bits, assuming the function unit is

implemented as two independent circuits. Based on the combinational circuits implemented

on an FPGA by them, an average overhead of 85% in the number of LUTs was observed.

Dolev et al. [180] seek to transform Hamming codes with arithmetic, by generating codes

for the fundamental NAND operation. The idea is to re-generate the code by performing

correction on the input and then performing NAND and XOR. The XOR could be replaced

with a BCH encoder for multi-bit error correction support.

Other orthogonal techniques

Banerjee et al. [181] outline an ASIC design flow where-in the application designer specifies

which modules are critical and which can do with approximate outputs. This is especially

relevant in DSP applications, for example, in FIR filters, certain coefficients are more

important than the others. Post identification via a probabilistic analysis to determine

potential fault locations, series transistors are added to mitigate potential shorts and parallel
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transistors are added to mitigate potential opens.

Blome et al. [182] propose using a small protected cache of live register values for better

coverage than protected register files in that protecting the non-state logic (like read/write

logic) of a storage structure is easier for smaller structures. As far as computation is

concerned, time delayed shadow latches are used to leverage temporal redundancy.

Another class of computational error correction techniques is that of limiting redundancy

to that of detection and using rollback to an error-free checkpoint to recover. Needless to

mention, such a mechanism comes with its own set of trade-offs and challenges, some of

which are: non-zero error detection latency, recovery latency, degree and stride of checkpoint

placement etc.. We refer the interested reader to the techniques presented by Habkhi et al.

[183] as a starting point for a discussion of these issues and related work in the area. Of

further note is the use of checkpoint based recovery in speculative processors.

5.2.4 Summary of non-residue based codes

Standard error correcting codes (ECC) [184] have already been adopted into modern memory

systems. These codes accommodate errors occurring in storage and communication/network

traffic, but are not able to protect computational logic. The naive approach to computational

error correction is triple modular redundancy (TMR) [152], requiring over a 200% overhead

in area and energy for single error correcting/double error detecting (SECDED) capability.

Several techniques in the form of arithmetic codes such as AN codes [157, 162, 159, 158,

160, 161], self-checking [164, 179, 170, 166, 169, 168, 172] and self-correcting [163, 165,

171, 180, 174, 177, 178, 175, 173, 176] adders and multipliers have since been devised.

Orthogonally, there have been proposals that employ redundancy at a higher granularity,

such as timing speculation (wherein error correction capability is limited to circuit timing

violations) [185, 186], partial pipeline replication [187] or checkpoint-rollback-recovery

such as those in IBM POWER6/7/8 and z10/196 [188, 189, 190, 191] processors, and

various Intel Corporation [192] and Sun Microsystems mainframes [193]. While these are
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Table 5.1: A (4, 2)-RRNS example with the simplified base set (3, 5, 2, 7, 11, 13). % is the mod
operator. Range is 210, with 11 and 13 being the redundant bases. (Reproduced from [29].)

Decimal % 3 % 5 % 2 % 7 % 11 % 13
13 1 3 1 6 2 0
14 2 4 0 0 3 1

13+14=27 (1+2)% 3=0 2 1 6 5 1
All columns (residues) function independently

of one another.
An error in any one of these columns (residues)

can be corrected by the remaining columns.

more efficient than naive TMR, they come with limitations on their error model, their area

overheads are still over 100% and/or they incur a significant performance penalty [194]

(e.g., owing to the fact that they leverage temporal redundancy in an effort to minimize area

overhead).

5.2.5 Residue based codes

There exists a class of computationally error resilient codes based on the residue number

system (RNS) [106], that are generally superior to the above techniques in terms of area,

energy and latency overheads. The premise of RNS is that a number can be uniquely

represented as a tuple of residues, where the residues are the remainder when the number

is divided by a set of coprime bases/moduli. Each residue itself may be represented in a

weighted radix representation in binary. An example is shown in Table 5.1. Assume the set

of bases/moduli to be (3, 5, 2, 7); then, the number 13 can be uniquely mapped to the tuple

(1, 3, 1, 6) as a result of the Chinese remainder theorem. Observe that (13 mod 3 = 1), (13

mod 5 = 3) and so on. Now, suppose we wish to add 13 (1, 3, 1, 6) to the number 14 (2, 4, 0,

0); this can be achieved by simply (modulo) adding the residues respectively to obtain 27

(0, 2, 1, 6). Observe that ((1 + 2) mod 3 = 0), ((3 + 4) mod 5 = 2) and so on. Critically, the

computation occurs with no carries or interaction between residues.

Formally, let B = {mi ∈ N for i = 1, 2, 3, ..., n} be a set of n co-prime natural

numbers, which are referred to as bases or moduli. M =
∏n

i=1mi defines the range of

natural numbers that can be bijectively represented by an RNS system that is defined by the
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set of bases B. Specifically, for x such that x ∈ N, x < M , then, x can be represented as

the following tuple: (|x|m1 , |x|m2 , |x|m3 , ..., |x|mn), where |x|m = x mod m. Each term in

this n-tuple is referred to as a residue. If necessary the value of x can be regenerated from

the tuple of residues using a series of addition and table lookup operations via the Chinese

remainder theorem, mixed-radix conversion, or macro-coefficient extraction.

Addition, subtraction and multiplication are closed under RNS, rendering the residues

to be mutually independent wrt arithmetic. In other words, given x, y ∈ N, x, y < M ,

|x op y|m = ||x|m op |y|m|m, where op is any add/subtract/multiply operation.

In other words, RNS is closed under subtraction and multiplication operations as well,

and they too can operate without interaction between residues. This important property has

several useful implications:

• As the residues operate with no carries between them, they can operate in parallel.

Furthermore, each residue operation’s bit width is a fraction of that of the original

operation. This translates into improved computational efficiency, which has been

proven to be especially useful in digital signal processing (DSP) [195, 196, 197].

• A very large number can be losslessly represented and operated on via many smaller

numbers (residues) in parallel. This property is used by the cryptography (RSA)

community [198, 199, 200].

• Any bit error caused by a faulty computational logic element is guaranteed to be

localized to within the corresponding residue, without impacting any of the other

residues.

The last implication is of particular interest because it allows for a robust, efficient

method for computational error correction. When redundant bases/moduli are introduced

(Redundant RNS or RRNS) [201], the resulting redundant residues form an error correcting

code that transforms itself automatically upon arithmetic operations, rather than having to

be recomputed afterwards. If a corrupt residue results during an arithmetic operation, it is
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possible to infer its value using the remaining correct residues in the result. To continue our

running example in Table 5.1, the number 13, being less than the product of the initial set

of bases/moduli (3, 5, 2, 7), (i.e, 210), it can be uniquely represented using the 4-tuple (1,

3, 1, 6), via the Chinese remainder theorem. As such, these bases/moduli and residues are

referred to as non-redundant. Upon adding two redundant bases/moduli, say (11, 13), the

resultant redundant residues are therefore (2, 0). These redundant residues, by definition,

are not necessary for representation, but provide a way to recover from errors. Given the (4,

2)-tuples for 13 (1, 3, 1, 6, 2, 0) and 14 (2, 4, 0, 0, 3, 1), a storage/transmission/computation

error arising in any one of the residues of 13, 14 or their arithmetic manipulation result, can

be corrected using the remaining residues. The running example is summarized in Table 5.1.

Formally, the set of moduli now contains n non-redundant and r redundant moduli: B =

{mi ∈ N for i = 1, 2, 3, ..., n, n+ 1, ..., n+ r}. The reason these extra bases are redundant

is because any natural number smaller thanM (=
∏n

i=1mi) can still be represented uniquely

by its n non-redundant residues. Recall that the introduction of r redundant residues renders

a computationally resilient error code because of the fact that all residues are transformed

in an identical manner under arithmetic operations. For x such that x ∈ N, x < M , its

RRNS representation is as follows: (|x|m1 , |x|m2 , |x|m3 , ..., |x|mn , |x|mn+1 , ..., |x|mn+r), i.e.,

containing n non-redundant residues as well as r redundant residues.

We refer the interested reader to [201] for details of the multi-bit error correction opera-

tion, which involves addition, multiplication and table lookup operations. This correction

capability increases with r, tolerating upto r
2

errant residues [202]. There are proposals

to perform fractional multiplication [201] and to represent floating point numbers [203]

using RNS. The key idea to extend this to RRNS is to protect the exponent and mantissa

separately, as they transform differently upon arithmetic operations. For fault tolerance

to work, certain conditions must be satisfied by B [201]. Given these, published work

suggests that the most efficient conversion to binary algorithm (for n = 4, independent of

r) nominally costs 8 cycles and is possible via macro-coefficient extraction [201]. More
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efficient conversion algorithms for RNS exist, such as those that use Mersenne primes (or

other specific structural properties) as bases [204, 205, 206], but no known RRNS algorithms

exist. A detailed treatment of these concepts is beyond the scope of this thesis.

The range for an RRNS representation is the product of its non-redundant moduli.

Therefore, by choosing a non-redundant base/modulus set to be (199, 233, 194, 239) it

becomes possible to represent a 32-bit integer in general in an RNS format, and extending it

with a redundant set of (251, 509) allows for an RRNS representation. Such a (4, 2)-RRNS

has the following advantages, over and above what RNS provides to us:

• Computational error correction can be achieved with a little over 50% area overhead.

• The SECDED granularity is that of a residue; meaning that such an RRNS is capable of

correcting multi-bit errors as long as they occur within a single residue, or alternately,

is capable of detecting multi-bit errors as long as they occur within at most 2 residues.

• Being closed under arithmetic, the correct value is preserved across a chain of depen-

dent operations. Therefore, it is not necessary to incur the overhead of an RRNS error

correction/detection after every operation.

• Due to the above, RRNS lends us robust computational error correction with relatively

insignificant performance penalty, as is evidenced by this thesis.

Furthermore, there has been a significant body of research on RRNS that strives to

make it more efficient algorithmically for error resilience [207, 208, 209, 210, 211, 212,

213, 214, 215, 216, 217, 202, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229,

230, 231, 232, 233] and division [214, 227, 234, 235, 236, 200, 237, 238, 239]. Although

typically limited to detection, residue based logic protection (including that for floating

point units and vectorized units) has widespread used in several commercial high-end server

processors [188, 193, 190, 192, 191]. Clearly, the RRNS approach of computational error

correction is ranked among the highest in terms of error correction capability and efficiency.

93



An efficient RRNS-based architecture is a viable compiler target for contemporary

general-purpose as well as scientific computing applications, in addition to being able to

work efficiently with novel devices that operate close to the kT noise floor. We strongly

believe that single-thread processor performance scaling that has been stalled since the

mid-2000s can be restarted via RRNS.

5.3 The CREEPY approach

5.3.1 Overview

Given new device concepts that enable device operation at signal energies close to the kT

noise floor [16, 18, 21, 20, 19, 22], CREEPY (Computationally Redundant, Energy Efficient

Processing for Y’all) aims to achieve lower energy consumption by lowering Vdd in such a

manner that the intermittent errors that thereby arise are corrected efficiently.

We take note of the compute preserving properties of RRNS above and propose building

a Turing-complete computer around this idea.

A CREEPY core consists of 6 subcores, an Instruction Register (IR) and a Residue

Interaction Unit (RIU), as depicted in Figure 5.2.

Each subcore consists of an adder, a multiplier, a portion of the distributed register file

and a portion of the distributed data cache. The bit-width of these components is same as that

of their corresponding residue (8-bit or 9-bit in this example). Each subcore is fault-isolated

from the other because it is designed to operate on a single residue of data (analogous

to a bit-slice processor, with bolsters). Post a successful instruction fetch (the instruction

cache stores instructions in binary, and is ECC-protected), the ECC-checked instruction is

dispatched onto the 6 subcores, which then proceed to operate on their corresponding slice

of data. For example, adding two registers is done on a per residue basis; the register file is

itself distributed across the 6 subcores. Similarly, the data cache is also distributed across

the 6 subcores and stores RRNS protected data. The RIU is then responsible to perform any

operations that involve more than a single residue.
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Figure 5.2: The CREEPY Core with the reference RRNS system. The register file and data cache
are distributed across the subcores.

Because conversions to and from binary are expensive and rather unnecessary for RRNS

data, a CREEPY core operates entirely on RRNS data and literals. An upshot of this is that

control-path errors manifest themselves as data errors, meaning that they can be handled

simply by handling the data error. For example, if there is an error in bypass logic in a

subcore, or, if a faulty decoder in one of the subcores causes it to perform a multiplication

instead of an addition, the resultant residue for that subcore would have an erroneous value,

but can be recovered from the remaining 5 residues that were a result of the correct addition

operation.

Although operating entirely on RRNS data and literals avoids the significant overheads

of converting to/from binary, representing a memory address (for the purposes of PC, LD and

ST) in an RRNS format naively may cause significant degradation in locality and changes

memory access patterns, which is fundamental to memory systems performance. This issue

is handled in Chapter 3, where we propose bit-manipulation techniques as well as a compiler

based approach, with little to no overhead.

CREEPY employs standard ECC-protected main memory because of ECC’s compact-

ness and efficiency when it comes to protecting stored data. However, standard ECC isn’t

amenable to computational fault tolerance and therefore, the representation of data is in RNS

form (as opposed to binary). The memory controller checks ECC on a processor load and

generates the two redundant residues before loading the resultant RRNS data into the last
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level cache. Similarly, it generates ECC upon a processor store (and the redundant residues

are not stored into the main memory). The exact choice of ECC is not relevant to this work;

any of the existing schemes [184] may be used.

5.3.2 ISA

The description of CREEPY ISA is laid out in a manner similar to that of the MIPS ISA,

for explanatory purposes. To simplify instruction fetch and decode, all instructions are

of fixed length; 32 bits. The ISA expects 32 registers (R0-R31), with R0 hard-wired to

zero, R30 being the link register and R31 storing the default next PC (= PC + 4). In

our micro-architecture, each register is 49 bits long (i.e., it contains the RRNS redundant

residues as well) and is sliced on a per-modulus (sub-core) basis. The data cache is also

implemented in a similar manner, as it stores data in an RRNS format.

1. R-Format (ADD/SUB/MUL)

These instructions assume that the destination operand as well as both source operands

are registers.

Opcode Src Reg1 Src Reg2 Dest Reg Reserved

6b 5b 5b 5b 11b

2. I-Format (ADDI/SUBI/MULI)

For instructions that require compiler generated immediate literals, two new instruc-

tions (that always occur in succession without exception) are defined. Telescopic

op-codes are employed to facilitate implementation of such set instructions. The

fundamental need for the set instruction arises from the fact that literals are 49 bit

RRNS values and would not otherwise simply fit within a 32 bit field (next to an

immediate instruction, for example).
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Set123 sets the the first 3 residues of the immediate value into the first 3 sub-core slices

of the destination register and Set456 sets the remaining 3 residues of the immediate

value into the other three sub-core slices of the destination register.

Opcode Dest Reserved Residue3 Residue2 Residue1

11[2b] 5b 0[1b] 8b 8b 8b

Opcode Dest Residue6 Residue5 Residue4

11[2b] 5b 9b 8b 8b

For an example, consider the immediate instruction Addi R1, R2, 0x020202020202. A

CREEPY program would implement this instruction as follows:

(a) Set123 R3, 020202

(b) Set456 R3, 020202

(c) Add R1, R3, R2

3. Branch

Opcode Reg1 Reg2 Reg3 Link Reserved

6b 5b 5b 5b 1b 10b

Recall that R0 = 0, R31 = PC + 4 and that R30 is the link register. A CREEPY branch

follows one of the following semantics:

(a) Reg1 = R0 and Reg3 = R0 and Link = 0: An unconditional branch that always

jumps to the address in Reg2.

(b) Link = 0: A conditional branch that jumps to the address in Reg2 (base) + Reg3

(offset) if Reg1 is 0. This is otherwise known as a beqz instruction.

(c) Link = 1: A branch and link instruction to enable sub-routine calls and returns.

The default next PC is stored into the link register and the program jumps to the

address in Reg2.
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4. Load/Store

Opcode Reg1 Reg2 Reg3 Reserved

6b 5b 5b 5b 11b

Reg3 is the destination for a load and is the source register for a store. The source/des-

tination address for a load/store is given by Reg1 (base) + Reg2 (offset). Note that

the memory address is hereby stored in an RRNS format. Recall from Section 3

that efficiently handling RRNS addresses without conversion to binary is critical to

application performance. Tradeoffs and methodologies in this space are handled by in

Chapter 3.

5. RRNS Check

Opcode Reg1 Reserved

6b 5b 21b

Reg1 is the register that needs to be checked. Once an error is detected, the system

would try to correct it by utilizing RRNS error correction logic in the RIU. Candidate

usage scenarios are discussed in Section 5.4.1 and evaluated in Section 3.5. Helper

instructions such as mov, ret etc. also exist, but are omitted from this description for

brevity.

5.3.3 Error Model

First, a distinction among fault, error and failure is made as follows:

Fault. A single bit flips, but is not stuck-at, i.e., only intermittent / transient faults are

considered. Causes may range from unreliable devices to low supply voltage to particle

strikes to random noise and any combination therein.

Error. One or more faults in a single residue that show up during a consistency check.

Failure. Error uncorrectable and no recovery mechanism, or error undetectable.
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Faults may lead to errors which may lead to failures. We can guarantee the system is

reliable if at most one error per core occurs between two RIU checks. Multiple bit flips are

rare but this phenomenon occurs if a circuit in the carry chain fails [188]. In our design,

carry chains are limited to a residue as there are no carries between residues. Therefore, any

resulting multi-bit errors would be localized to a single residue, which we can correct. If

this RRNS system needs to detect and correct multiple error residues, an extra checkpoint

and rollback mechanism is necessary. However, based on the discussion above, the case of

multiple residues in error is extremely rare, and is therefore left to future work.

Redundancy in time, i.e., check at cycle x, check again at cycle y, check again at cycle

z, and vote, does not apply to this model as it is possible that the three checks suffer 3

independent 1 bit faults, rendering voting useless. The transient clause in the model rules out

stuck-at faults. An implication of this is that one cannot achieve reliability by merely trading

performance alone. Additional resources in terms of spatial redundancy are necessary, which

is exactly what has been designed.

Different components of the core are protected via specialized means that target each

component. The guiding principle is to design a system that uses the more efficient of

RRNS/ECC based redundancy based on the range and nature of data being protected. Where

both techniques are deemed insufficient to prevent the fault from metastasizing into an error,

and eventually into a failure, the more conventional (and expensive) method: Triple Modular

Redundancy (TMR), is employed. An alternative is to prevent the fault from occurring in

the first place by using high Vdd (and/or circuit hardening). Choosing optimally between

the latter expensive techniques is beyond the scope of this document but the assumption is

that the RIU uses a high Vdd / hardened circuitry. It is further assumed that error in control

signals manifest themselves as errors in data (for example, a control error causing one of the

subcores to operate on the wrong opcode will be caught as a data error); however, one can

potentially further improve the control signals’ integrity by using either TMR or intelligent

state assignment, and that the RIU uses a high Vdd / hardened circuitry.
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5.4 Design Tradeoffs for an RRNS core

5.4.1 RRNS Check Insertion Strategies

Given that the CREEPY microarchitecture supports the error model outlined above, it is

necessary to carefully insert RRNS check instructions as they have a direct impact on the

performance-energy-reliability metrics of the core. In this section, we outline the following

check insertion schemes.

Periodic check

Insert a single check instruction after every n instructions. When n = ∞, this is an

unchecked core and when n = 1, every instruction is checked. Note that lowering the value

of n increases the check insertion frequency, raising performance overhead. While increased

check insertion frequency typically provides increased reliability, one must be wary of the

fact that the check instruction itself is of non-zero latency, meaning that, the longer the core

spends in consistency checking, the longer it leaves its state vulnerable for errors to creep in.

On the other hand, not checking every instruction also increases the probability of errors

manifesting into multiple residues, leading to core failure.

Pipelined check

Insert a pipelined check that checks n instructions after every n instructions. This approach

has the performance advantage of amortizing the latency of RRNS check via pipelining

as well as the reliability advantage of being able to increase state coverage of consistency

check.

StateTable guided adaptive check

We define a bookkeeping entity known as StateTable (described in the next Section)

to maintain temporal information of the vulnerability of processor state. Whenever the
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probability of a register exceeds a certain threshold, an RRNS check is inserted for that

register. Naturally, this can be extended to insert pipelined checks if more than one register

is in need of a check. This StateTable itself is assumed to be an error-free entity that can

either be implemented in software or hardware. Like the other two schemes, this insertion

scheme can be implemented by the compiler or by the runtime (hardware or software);

however, it is likely that utilizing a runtime component for this purpose would yield greater

accuracy, which translates to improved efficiency and reliability, although subject to the

overhead the StateTable itself introduces.

Irrespective of the check strategy, we acknowledge that the following need to be error-

free for correct execution; however, for the purposes of this simulation, we ignore their

overheads/implications on control flow by assuming periodic checkpointing for potential

rollbacks: (1) Effective address of each memory access (RRNS check), (2) Instruction

contents (standard ECC check), and, (3) Main memory contents (standard ECC check). For

a low-overhead checkpoint mechanism candidate, one can use an incremental checkpoint

scheme to save energy and reduce storage overhead, when compared to using full checkpoints

alone. The incremental checkpoints only record the modified entries from the last checkpoint

(the last checkpoint could either be a full checkpoint or an incremental checkpoint). Once

the rollback operation is necessary, the system can then use the last full checkpoint and

the subsequent incremental checkpoints to recovery the machine state. A detailed trade-off

analysis of the size, frequency, reliability and energy of such a scheme is beyond the scope

of this thesis.

5.4.2 Multi-Domain Voltage Supply

The error distribution for each domain of a CREEPY core, viz., computational logic, SRAM

cells and RIU logic, are different. In an SRAM device, any fault occurring in one of

its transistors gets latched, thereby resulting in an error. To contrast, glitches in logic

transistors get masked if the glitch does not occur close to the clock edge. Also, to avoid

101



having to ’check a check instruction’, we assume the RIU logic is error-free protected via

TMR, hardened logic, and/or higher signal energies, with the latter sufficient to model the

energy effects of the former. Given that the vulnerability of these domains increases from

computational logic to SRAM cells to RIU logic, it is inefficient to assume a uniformly

high signal energy across these domains. We model this phenomena by independent voltage

rails for each of these domains. Shimazaki [240] and Rusu [241] proposed some multi-

voltage domain designs. The voltage domains referred to in CREEPY are coarse-grained

(module-based), rendering the implementation feasible.

Orthogonally, index-sum multiplication has been proposed in the past [242] to achieve

multiplication via simple addition and table lookup operations, thereby rendering it more

efficient than traditional binary multiplication, provided the size of the LUT is not too

large. The principle is analogous to using a logarithm operation, i.e., a multiplication can be

achieved via a table lookup, addition and a reverse table lookup. The size of the LUT for a

32-bit input is very large, however, RNS properties allows it to be sliced into significantly

smaller tables. The results presented later in this chapter therefore include the index-sum

multiplier as well. However, the details of this technique are beyond the scope of this thesis,

and can be obtained instead directly from our publication [30]. Similarly, specific details of

the RIU algorithms, such as single error detection and correction algorithm, signed number

representation, overflow detection, comparison and correction factors for arithmetic are

omitted from this thesis and the interested reader may view our publication instead.

5.5 Stochastic Simulation Model

To measure the performance-energy-reliability trade-off of a CREEPY core, a stochastic

fault injection mechanism is augmented into a cycle-accurate in-order trace-based simulator.

This work abstracts the notion of using next-generation devices operating at low signal

energies (Es) and the resulting interaction with the kT noise floor into Pe, the probability of

an error occurring in a transistor state in any given cycle. Es, provided as an input to the
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simulation, is a measure of the signal energy at the input of a transistor; Pe is the probability

of a fault occurring at the output of a transistor in any given cycle. The relationship of Es

and Pe can be defined by the following relation: Pe = exp(−Es

kT
) [243]. From Section 5.4.2,

these inputs are vectors as they denote the signal energies and error probabilities for each

voltage domain, however, for explanatory purposes, the text presents them as scalars for

the remainder of this section. Also input to the simulator is the check insertion strategy, as

discussed in Section 5.4.1. Because this work evaluates a very different number system,

an unpipelined microarchitecture was simulated with no branch prediction and a 2-level

memory hierarchy (LLC-DRAM, with latencies of 12 cycles and 100 cycles for LLC hit

and miss respectively) to restrict the primary focus of this chapter.

We first introduce a series of error events and their probabilities.

Pe Probability of an error occurring in a transistor state in any given cycle. This is provided

as an input to the simulation, as just discussed.

Padd Probability of at least a single error in an adder (each sub-core has an adder). If there

are Nadd transistors in an adder, the probability of each of these transistors being free

of error is (1−Pe)
Nadd . Therefore, Padd=1-(1−Pe)

Nadd . Similarly, Psub and Pmul are

calculated. For multi-cycle operations, this definition holds as long as the state of each

transistor is used exactly once for the operation. This is true for the said operators.

Note that this is a conservative (pessimistic) estimate in our evaluation because this

work ignores any error masking that may potentially occur.

PRi
Probability of at least 1 error being present in a slice (sub-core/residue) of register Ri

since its last write. To compute this, a StateTable is devised, the ith entry of which

holds the tuple (P , cycle), where, P is the probability of Ri having atleast 1 error

being present in the corresponding residue upon its most recent update at cycle cycle.

This StateTable is updated for each register write.

For example, consider the register R0. 1) At cycle 0, the default value of R0 tuple
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is (P=0, cycle=0). 2) At cycle 10, assume that there is an ADD instruction: ADD

R0, R1, R2, and that it is the first instruction writing to R0. The tuple value is then

updated to (Error Probability ADD, 10). It is necessary to update the P value here

because the error probability of this ADD instruction should be taken into account. P

value would then be set back to 0 once an RRNS check is inserted for that register

and no error is detected, and then set the current system cycle value to the cycle field.

This way, the P field in the StateTable always reflects the probability of that register

of having at least 1 error being present in one of its residues, given its most recent

update at the cycle field.

Assuming an SRAM implementation of 8-bit wide Ri, the number of transistors is

8× 6 = 48. The probability of Ri being error free is subject to two probabilities: (1)

probability of an error-free write, (P1 = 1− StateTable[Ri].P ) and, (2) probability

of no error creeping into it since its last write (P2 = (1− P ′e)48(c−StateTable[Ri].cycle)),

where, c is the current cycle and P ′e is the probability of an error occurring in the state

of an SRAM transistor. Due to the nature of an SRAM device, any fault occurring in

one of its transistors gets latched, resulting in a higher probability of an error (when

compared with glitches in logic transistors getting masked if the glitch does not occur

close to the clock edge). As such, it is assumed that P ′e = 100Pe. Putting it all

together, PRi
= 1− P1 ∗ P2.

PLOAD X Probability of at least 1 error being present in the loaded data of address X . This

is analogous to PRi
, with the extended StateTable storing an entry for each cache

line. As this work assumes a perfect off-chip (ECC protected) main memory, cache

miss repairs are initialized with a zero probability in error, and cache replacement

victims’ entries are evicted from the StateTable. Finally, PLOAD X encapsulates the

probability of an error in the implicit computation of the address X itself (from its

base and offset) during the execution of the load, in addition to the probability of an

error in the loaded data from the cache line.
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PSC Probability of at least 1 error occurring in a sub-core from the last time it was checked.

To illustrate, consider the following add instruction: ADD R3, R2, R1. Then, at the

end of instruction, PSC = 1− (1− Padd)(1− PR2)(1− PR1).

PC Probability of exactly 1 error occurring in a CREEPY core from the last time it was

checked. This translates to exactly 1 sub-core being in error (where the sub-core

error itself may be of multi-bit form; RRNS can tolerate multi-bit flips within a single

residue). Therefore, PC = 6C1 × PSC(1− PSC)
5, where the combinatorial choose

operator nCr enumerates the number of ways in which r items can be chosen from n

distinct items.

P 0
C Probability of no error in a CREEPY core from the last time it was checked. P 0

C =

6C0 × (1− PSC)
6 = (1− PSC)

6.

P fail
C Probability of a CREEPY core failing at any given cycle, since the last time it was

checked. The current version of the CREEPY micro-architecture is unable to correct

more than 1 error occurring in the core, and assumes a recovery mechanism such

as checkpointing is in place. As such, this work deems ≥ 2 errors in the core as

amounting to a failure. Therefore, P fail
C =

∑
2≤r≤6 6Cr × P r

SC(1 − PSC)
6−r =

1− P 0
C − PC .

Note that the computation of these error probabilities is done after every instruction

(irrespective of the check insertion strategy) for the purposes of bookkeeping such as

StateTable update and to estimate the probability of a failure P fail
C,i at each time step ti.

This work uses a typically used reliability metric, Mean Time Between Failure (MTBF)

[244], which can be defined as follows: MTBF = Total Cycles

CPU Frequency ×
∑

i P
fail
C,i

. The subscript

i in P fail
C,i represents the ith instruction of the instruction stream. MTBF also corresponds to

mean time to checkpoint recovery.
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5.6 Results from RRNS Core Simulations

5.6.1 Signal Energy Limits

From an independent set of simulations of a non-error-correcting core operating on binary

data, it is found that the minimal signal energy required for ensuring its reliable operation is

48kT . In the first design of an error correcting RRNS core [29], a single voltage domain was

assumed across computational logic, SRAM cells and RIU logic. Together with a traditional

multiplier (i.e., without index-sum), a pipelined check insertion strategy (with a frequency

of 5 instructions) and a 16MB LLC, the result is that one can tolerate gate signal energies of

42− 43kT , as shown in Figure 5.3.

However, given the dissimilarity in error distribution across computation, SRAM and

RIU (Section 5.4.2), independent voltage domains are considered for these. For simplicity,

the RIU gate signal energy is conservatively set to be 48kT (i.e., same as that required for a

non-error correcting binary core), although it can be potentially lowered as its functionality

is a subset of that of a binary core. It is found that the relative impact of energy savings in

the RIU is rather limited (Section 5.6.4), and therefore restrict the RIU gate signal energy to

48kT in our evaluations.

We abstract these voltage domains as a triplet; for example, 30− 43− 48 denotes the

gate signal energy for computational logic to be 30kT , SRAM cells to be 43kT , and RIU

logic to be 48kT . For the purposes of this evaluation, a target MTBF of 1E + 10 seconds

(over 300 years) is assumed and it is found that the gate signal energy for computational

logic can be lowered all the way to 28− 31kT , depending upon the benchmark, as shown in

Table 5.2.

Given these minimum signal energies, the performance, efficiency and reliability of vari-

ous core configurations are evaluated in the following sub-sections. The core configurations

presented are as follows:

Binary A non-error-correcting core operating on binary data. This is the baseline and
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Figure 5.3: Reliability when a single voltage domain is used.

Table 5.2: Sensitivity of MTBF (seconds) to benchmarks and gate signal energies of computational
logic, SRAM cells and RIU logic. For example, 30-43-48 denotes the gate signal energy for

computational logic to be 30kT , SRAM cells to be 43kT , and RIU logic to be 48kT .

Benchmarks 36-43-48 35-43-48 34-43-48 33-43-48 32-43-48 31-43-48 30-43-48 29-43-48 28-43-48 27-43-48
perlbench 1.70E+17 2.29E+16 3.10E+15 4.20E+14 5.69E+13 7.70E+12 1.04E+12 1.41E+11 1.91E+10* 2.62E+09

gobmk 1.07E+17 1.44E+16 1.95E+15 2.64E+14 3.58E+13 4.85E+12 6.55E+11 8.87E+10 1.22E+10* 1.97E+09
hmmer 4.08E+16 5.53E+15 7.48E+14 1.01E+14 1.37E+13 1.85E+12 2.51E+11 3.40E+10* 6.23E+09 9.69E+08
matmul 1.08E+16 1.47E+15 1.99E+14 2.69E+13 3.64E+12 4.93E+11 6.66E+10 9.02E+09* 1.22E+09 2.76E+08

mcf 1.81E+17 2.44E+16 3.31E+15 4.47E+14 6.06E+13 8.20E+12 1.11E+12 1.50E+11 2.03E+10* 2.80E+09
fft 7.63E+14 1.03E+14 1.40E+13 1.89E+12 2.56E+11 3.47E+10* 4.69E+09 6.35E+08 1.86E+08 2.32E+07
dct 1.33E+15 1.80E+14 2.44E+13 3.30E+12 4.47E+11 6.05E+10 8.18E+09* 1.11E+09 3.11E+08 4.02E+07
gcc 1.41E+17 1.91E+16 2.59E+15 3.50E+14 4.75E+13 6.42E+12 8.68E+11 1.18E+11 1.60E+10* 2.37E+09

bzip2 1.73E+17 2.34E+16 3.17E+15 4.29E+14 5.81E+13 7.86E+12 1.06E+12 1.44E+11 1.95E+10* 2.65E+09
miniFE 6.94E+14 9.39E+13 1.27E+13 1.72E+12 2.33E+11 3.15E+10* 4.26E+09 5.77E+08 1.69E+08 2.11E+07

miniXyce 1.09E+16 1.47E+15 1.99E+14 2.69E+13 3.64E+12 4.93E+11 6.66E+10 9.02E+09* 2.04E+09 3.06E+08
* These signal energies are used for the remainder of this work, as they render reasonable reliability.

requires signal energies of at least 48kT in order to achieve reasonable reliability.

RNS A non-error-correcting core operating on RNS data. In other words, an RRNS core

without redundant subcores and error correction capabilities.

RRNS pipe5 An error correcting RRNS core with a pipelined check insertion strategy

(with a frequency of 5 instructions), as was determined as the most optimal strategy

in the first RRNS core design [29].

Index-sum pipe5 Similar to RRNS pipe5, except that the traditional multiplier is replaced

with an index-sum multiplier.

RRNS Adapt 1e-9 An error correcting RRNS core with an adaptive check insertion strat-

egy (with an error probability threshold of 1e− 9. It was found that 1e− 9 was the

optimal threshold obtained via simulation for target MTBF/signal energy).

Index-sum Adapt 1e-9 Similar to RRNS Adapt 1e-9 that uses an index-sum multiplier.
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Figure 5.4: Performance of various core configurations, normalized to an non-error-correcting
binary core

5.6.2 Performance

Figure 5.4 presents the performance of various core configurations listed in Section 5.6.1,

normalized to that of a non-error-correcting binary core.

There is an inherent performance degradation in running binary-optimized code on an

(R)RNS-based core because position-based bit manipulation techniques are expensive in

(R)RNS, however, this is limited to about 20% on average. Introducing error correction

may further degrade performance if naive or static check insertion strategies are used. The

overhead due to error correction is amortized when the check insertion strategy is adaptive

instead.

5.6.3 Energy

The primary concern of CREEPY core design is reducing the core energy overhead. Figure

5.5 shows the normalized energy consumption of the aforementioned configurations.

The non-error-correcting binary core requires high gate signal energies in order to be

reliable. Given the low-bit-width and carry-free nature of RNS arithmetic, RNS based cores

are inherently more energy efficient than their binary counterparts. When efficient error

correction is introduced, further energy savings can be achieved as the supply voltage can be

turned down while still maintaining reliable functionality. Adaptive check insertion strategy

ensures that the overhead of error correction is minimal. Finally, using index-sum multipliers

enables further energy savings as they are more efficient than traditional multipliers (savings

of over 3× for multiplication intensive benchmarks and over 2.3× on average).
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Figure 5.6: EDP Comparison for Different Strategies

Figure 5.6 shows the Energy Delay Product (EDP) of these core configurations, normal-

ized to that of a non-error-correcting binary core. With the exception of arithmetic intensive

workloads, RNS cores typically have a higher EDP than binary cores. However, via effi-

cient error correction, our RRNS cores show significantly improved EDP. Specifically, by

utilizing our best optimization scheme (index-sum multiplier and adaptive check insertion),

one obtains EDP benefits of about 2× on average, or about 3× for multiplication intensive

workloads.

5.6.4 Potential of RIU Optimizations

As described in Sections 5.4.2 and 5.6.1, this work conservatively chooses the gate signal

energy for RIU logic to be that necessary for reliable operation of a Turing complete non-

error-correcting binary core, i.e., 48kT . One of the reasons for this is to side-step the issue

of ’checking the checker’. However, if one were to deploy self-checking logic or some other

optimizations in the RIU, it may no longer be necessary to use a high voltage supply for

the RIU domain. In this limits study, 3 possibilities of the gate signal energy to RIU logic

are evaluated: Binary - 48kT , Computation - same as that of RRNS subcore computational

logic, Zero - 0kT . From an Amdahl’s law perspective, it is found that optimizing RIU logic

has limited impact on core energy, as shown in Figure 5.7, thanks to our judicious RIU
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Figure 5.8: Generic high level schematic of an RRNS error correcting compute core with 4
non-redundant sub-cores and 2 redundant sub-cores.

usage via adaptive check insertion.

5.7 Review of the anatomy of an RRNS core microarchitecture

For improved readability, this section reviews the details of the RRNS core introduced above,

from the perspective of memory system design.

Figure 5.8 depicts a generic schematic of an RRNS core with 4 non-redundant sub-cores

and 2 redundant ones. This schematic is similar to prior RRNS core microarchitecture

proposals [30, 201]. Each sub-core is associated with exactly one base modulus and

thereby operates on its own residue, with the register file and highest level data cache being

distributed into the 6 subcores on a per-residue basis.

Error model. Recall that such a core operates entirely on RRNS data and literals,

meaning that there are no unnecessary (and expensive) conversions to and from binary.

Therefore, all memory addresses (PC, LD/ST) are in RRNS form, including any pointer

arithmetic. Another upshot of operating entirely on RRNS data is that control-path errors

manifest themselves as data errors, meaning that they can be handled simply by handling
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the data error. For example, if there is an error in bypass logic in a subcore, or, if a faulty

decoder in one of the subcores causes it to perform a multiplication instead of an addition,

the resultant residue for that subcore would have an erroneous value, but can be recovered

from the remaining 5 residues that were a result of the correct addition operation. Finally,

as instructions themselves don’t undergo modification, ECC is sufficient to protect them.

The architecture proposed in Chapter 2 is able to ensure reliable operation as long as at

most one subcore is in error (possibly multi-bit) between two error correction operations.

Circuit-hardening or using high Vdd for the error correction logic is proposed to ensure its

reliable operation. Because of latching effects, SRAM transistors have different (more prone

to errors) reliability characteristics when compared to logic, and as such, are modeled with

100× the error probability of logic transistors.

Overheads. In terms of area, such an RRNS error correcting core requires 2× the area

of a traditional non-error-resilient core. However, a large fraction of this overhead is from

LUTs necessary in the error correction operation; a (4, 1)-RRNS core that simply detects

errors is in fact 34% smaller in area when compared to a traditional core. In an independent

study that implements the error model above (but ignores memory addressing inefficiencies),

we found that the overhead due to slow comparison operations, boolean operations as well

as RRNS error correction operations resulted in an overhead of just about 20% in runtime

when compared to a traditional, non-error-correcting core over general purpose (SPEC2006)

as well as computationally intensive workloads (such as FFT, matrix multiplication etc.).

However, RRNS enables lowering of signal energy to few tens of millivolts, and results

in about a 2× improvement in energy-delay-product, in spite of these overheads. The

engineering details of this study are provided earlier in this chapter.

Abstractions for the memory interface. The presence of a Load/Store unit in the

redundant sub-cores is implementation dependent. For the purposes of this thesis, we

assume that the core is responsible for generating valid memory requests in the Memory

Address Register (MAR). This is possible by either (a) inserting an RRNS consistency check
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Figure 5.9: An (R)RNS compute core natively generates memory addresses in the 4-residue tuple
format. This is depicted by MAR % mi in the figure, where mi is the ith base modulus, % is the
modulo operator, and MAR could be one of Program Counter (PC), Load or Store address.

before a memory access, or (b) by enabling a checkpointing mechanism for rollback/recovery

in case a memory request to an illegal location is generated. For the latter, a segmentation

scheme can be used to flag ”wrongly” computed addresses as illegal, thereby triggering

checkpoint recovery. As we show in Section 5.9.2, minor perturbations in the native

rns concat representation of a memory address causes its value to fluctuate wildly, thereby

allowing for such segmentation to work. Note that the consistency check of (a) or the

segment check of (b) can be done in parallel with a memory access, and are therefore not on

the critical path of the program. Therefore, we omit the Load/Store units in the redundant

subcores. Finally, the addressing logic in the memory hierarchy (such as a decoder or an

address translator) is assumed to either utilize devices that do not stochastically flip due to

thermal noise, or employ self checking logic [245, 246]. Relaxing either assumption reveals

a set of implementation dependent tradeoffs and are beyond the scope of this thesis. Without

loss of generality, this thesis assumes that no explicit error correction is required for such

addressing logic in the memory hierarchy. It follows that the redundant residues can be

dropped from the MAR, and that a 32-bit address can be logically represented as a 4-tuple

RNS number.
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5.8 Need for Memory System Design for Computationally-Resilient Post-Moore Pro-

cessors

While RRNS is clearly attractive for designing ultra-low-power, computationally error

resilient microarchitectures, prior work on RRNS has abstracted away the memory hierarchy

for simplicity. Thus, an RRNS microarchitecture hits a performance bottleneck when

connected to non-ideal, real world memory systems. Memory is addressed in binary

in conventional processors, whereas an RRNS compute core natively generates memory

addresses as a tuple of residues. There are two naive approaches to this memory interface

problem:

Binary. Convert the tuple-of-residues format to binary and address memory in binary

as usual. This approach imposes a severe latency and energy penalty on every instruction

fetch, load and store operation. This overhead is due to the multi-step nature of each RNS

to binary conversion, which, nominally costs 8 cycles in the form of add and table lookup

operations. According to our results, this slowdown is 3× on average for in-order cores and

2× for out-of-order (OoO) cores.

Rns concat. Another straightforward, although naive approach is to concatenate the

native tuple-of-residues and use the result as the memory address. Unfortunately, this

technique destroys spatial locality of sequential memory accesses, rendering caches largely

ineffective and causing application slowdowns of over 3× on average for in-order cores and

4× for OoO cores.

There are other overheads associated with RRNS, such as non-trivial comparison and

boolean operations. However, the overheads due to memory addressing inefficiencies are

significantly higher. The memory hierarchy is accessed for each instruction (PC) in addition

to memory instructions (LD/ST). In contrast, comparison and boolean op instructions are

less frequent, even if a targeted code generator does not minimize such ops. Furthermore,

even with a naive implementation, the penalty for such ops is less than that of a cache
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miss. In an independent study (that ignores memory addressing inefficiencies), we found

that the impact of slow comparison, boolean operations as well as consistency checking

operations due to RRNS makes programs run just about 20% slower than a traditional core.

Yet, due to RRNS, we realize significant energy savings, rendering energy-delay-product

benefits of about 2× when compared to traditional non-error-correcting cores, in spite of

these overheads.

In spite of its strong potential to restart single thread performance scaling, an RRNS

processor is not competitive with traditional designs due to memory addressing inefficiencies

outlined above. The energy savings would be overshadowed by the decrease in memory

system performance. This chapter presents the first study of its kind to our knowledge to

focus on the RRNS memory access problem.

5.9 Memory Addressing Schemes

As noted in Section 5.7, the memory address generated by an RRNS compute core in its

native form is in a tuple-of-residues format, where the address itself may be to instructions or

data. As depicted in Figure 5.9, such a 4-tuple must be properly interpreted before the mem-

ory hierarchy can be accessed. This section presents a basis set of possible interpretations

of an address.

5.9.1 Interpretation Schemes

Binary. The approach assumed by prior work was to convert the 4-tuple of residues to its

binary representation and use this as a memory address. From this point on, the system can

access the memory hierarchy as conventional computers do. However, this conversion from

RNS to binary doesn’t come for free, and the cost must be paid for each memory access,

both cache hits and cache misses. This overhead is a multi-cycle access time increase and an

associated increase in energy consumption. This is because conversion from RNS to binary

is non-trivial: it is a multi-step operation, involving addition and table-lookup operations,
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(a) Delta between consecutive ad-
dresses:
binary scheme.

(b) Delta between consecutive addresses:
rns concat scheme.

(c) Delta between consecutive addresses:
rns sub scheme.

Figure 5.10: Spatial locality analysis via visual comparison of the 3 addressing schemes for a
sequential stream of addresses by computing the deltas of interpreted addresses of consecutive
addresses of the sequential stream.

and costs 8 CPU cycles nominally. Our experiments indicate that applications suffer from

a slowdown of 3× on average for inorder cores and 2× for OoO cores upon using such a

naive conversion approach.

{r1, r2, r3, r4} =⇒ binary({r1, r2, r3, r4})

This conversion typically is not a one-time cost as addresses may repeat themselves

(locality). As a solution, this work proposes to cache the conversion itself in a Conversion

Lookaside Buffer (CLB), in a manner similar to how a TLB caches translations.

Rns concat. On the other extreme is a lightweight interpreter that merely concatenates

the 4-tuple, with the resulting 32bit number being treated as the address to the memory

hierarchy. More concretely, the 4-residue tuple {r1, r2, r3, r4} is treated as the bitstream

r1r2r3r4.

{r1, r2, r3, r4} =⇒ r1r2r3r4

Rns sub is a scheme similar to rns concat, but the lowest residue is subtracted from the

3 other residues in an attempt to preserve locality.
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{r1, r2, r3, r4} =⇒ rns concat((r1 − r4)%m1,

(r2 − r4)%m2, (r3 − r4)%m3, r4)

where, the RNS base moduli are given by mi. This scheme is significantly less expensive

than binary and is slightly more expensive than rns concat.

5.9.2 Sequential Address Analysis Example

Figure 5.10 shows a comparison of how the 3 addressing schemes discussed so far, binary,

rns concat and rns sub, remap a stream of sequential accesses into the memory address

space. On the X-axis is the input value to the Memory Address Interpreter; on the Y-axis is

the difference (delta) between two consecutive interpreted memory addresses.

First, notice that the delta for binary is always exactly 1; converting the tuple-of-residues

back to the binary number they represent results in sequential memory addresses. However,

rns concat remaps accesses according to the following function: if the address X ≡{r1,

r2, r3, r4}, then X + 1 ≡{r1 + 1, r2 + 1, r3 + 1, r4 + 1}, thereby resulting in a delta of

0x01010101 as each residue is 8-bits wide. This is the delta value that is seen in the figure

as a straight horizontal line slightly above 224. However, each time a residue overflows, the

above constancy claim for delta breaks down, generating the discontinuities shown in the

plot.

Non-unit delta values will cause consecutive accesses to touch different cache lines and

memory pages, destroying spatial locality in the access stream. To mitigate this constant

delta offset seen in rns concat, this work defines rns sub in an effort to preserve locality.

Applying rns sub to X and 1, observe the following pattern (ignoring modulo overflows):

X ≡ {r1 − r4, r2 − r4, r3 − r4, r4}; 1 ≡ {0, 0, 0, 1}

=⇒ X + 1 ≡ {r1 − r4, r2 − r4, r3 − r4, r4 + 1}
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Therefore, rns sub yields a delta value of exactly 1 in the common case, similar to the

binary scenario. In general, the rns sub representation of any number n < m4 is {0, 0, 0, n},

meaning that difference between X + n and X in the rns sub representation is exactly n in

the common case. This means that rns sub is capable of preserving the spatial locality that

cache and DRAM memory systems need to deliver performance.

While the detailed evaluation of a prefetcher is beyond the scope of this work, intu-

itively, prefetchers that work well with binary would work well with rns sub as well. With

rns concat, however, a stride of 1 must be re-interpreted as a stride of 0x01010101, which

is the delta between consecutive addresses, significantly altering the operation of most

prefetchers.

Although our example analysis in this section is based upon a sequential address stream,

the insights are applicable to arbitrary streams that exhibit spatial locality, as is demonstrated

via simulation results detailed below.

5.10 Memory System Design Tradeoffs

Utilizing a basis set of address interpretation schemes outlined in Section 5.9, one can now

construct and analyze a design space consisting of memory access granularity, Memory

Address Interpreter (MAI) configuration and DRAM address interleaving dimensions.

5.10.1 Memory Access Granularity

As discussed in Section 5.9, with rns concat based schemes, consecutive addresses do not

map onto contiguous memory locations. This causes spatial locality in caches to suffer,

prompting us to salvage sequential locality by increasing the memory access granularity

to that of a cache line. Under this paradigm, each memory access now refers to a 64-byte

chunk of memory rather than a single byte. Clearly, this requires support from the software

stack, and this work proposes an ISA extension, named as the SELECT instruction, to help.

The SELECT instruction takes as arguments a base address (represented as rns concat),
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and a separate offset represented in binary to perform a word lookup within a cache line.

This hybrid binary-rns concat representation renders the best of binary on one hand, i.e.,

sequential locality as intended by the programmer, and that of rns concat on the other

hand, i.e., no runtime conversion overhead. A detailed example of how such a compiler

transformation may be effected is presented below for a word size of 8 bytes, although other

word sizes can also be supported.

Representing a portion of the address in binary may seem counter-productive to the

reliability of the system, but note that this offset is static (set at compile time) and therefore

does not warrant computational error correction, meaning that the ECC protection that

comes naturally to instructions (Section 5.7) is sufficient to protect this offset as well.

Introducing such a representation comes with a set of limitations in software. First,

if each cache line access is to be accompanied by a SELECT instruction, a static code

bloat of about 15% occurs. In practice, one can expect this bloat to decrease significantly

due to spatial locality; once a cache line is loaded, multiple SELECTs can be performed

without re-issuing the cache line access. Static code bloat can also be reduced by designing

compiler optimizations that further leverage spatial/temporal locality in instruction layout

and scheduling. Second, an increased memory access granularity renders arbitrary pointer

arithmetic and branch targets tricky to disambiguate at compile time, unless they become

aligned to cache-line boundaries. Finally, for general purpose system integration, such a

hybrid representation may be required to be extended into the software runtime to avoid an

explosion of pages. Alternately, TLB and paging performance may also be improved by

employing super pages [247, 248], especially in emerging storage class memories [249]

(with segmentation support for security).

The SELECT instruction requires tight integration with the software stack, the detailed

implementation of which is beyond the scope of this thesis. However, here is an example

loop transformation that a compiler may implement. Consider an implementation with a 64

byte cache line size, a double of size 8 bytes such that the following struct has a size of 16
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bytes, and the following snippet of code, where M < N are arbitrary natural numbers that

are not necessarily compile-time constants.

typedef struct { double x; double y; } Foo;

Foo foos[N];

double sum = 0;

for (i = 0; i < M; ++i) {

sum += foos[i].x;

sum += foos[i].y;

}

A pseudo-assembly code of the loop body in a binary computer would be as follows:

LD X, (foos + i*16) // Read foos[i].x

LD Y, (foos + i*16 + 1*8) // Read foos[i].y

ADD S, S, X

ADD S, S, Y

When SELECT instruction is used, the code transforms to:

uint8_t nOffset = sizeof(CACHELINE)/sizeof(Foo); // 64/16=4

// ++i is in RRNS ; ++n is in binary

for (rns_t i = 0; i < M / nOffset; ++i) {

LD A64, RNS(foos + i*sizeof(CACHELINE))

for (int_t n = 0; n < nOffset; ++n) {

SELECT X, A64, sizeof(Foo)*n

SELECT Y, A64, sizeof(Foo)*n + 1*8

ADD S, S, X

ADD S, S, Y

}

}

5.10.2 Memory Address Interpreter (MAI)

Figure 5.9 presents a simplified view of the memory system. With typical memory systems

comprising of L1, L2, L3 caches and a DRAM, the Memory Address Interpreter does

not necessarily have to be a singleton unit at the highest level of cache. With a non-

inclusive cache hierarchy, the following exhaustive set of legal Memory Address Interpreter
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(a) L1 MPKI normalized to binary

(b) L3 MPKI normalized to binary

Figure 5.11: Misses Per Kilo Instructions (MPKI – lower is better) of representative RNS based
schemes, normalized to a binary scheme. SUB successfully retains spatial locality present in the
lower order bits of IBIN. CRNS salvages sequential locality lost by NRNS, with the help of compiler
support.

configurations are explored:

1. Ideal

IBIN This is the ideal configuration where conversion to binary is without any overhead,

or equivalently, a non-error-correcting core that uses a conventional weighted binary

representation.

2. Naive

NL1 This is a naive conversion approach where every memory access is converted to binary

before accessing the L1 cache, thereby incurring a conversion overhead of 8 cycles

and its associated energy consumption (adders and lookup tables).

NRNS This is a naive conversion approach where the tuple of residues in the MAR is simply

concatenated (rns concat).

NMEM This is a naive conversion approach where rns concat is used through the cache

hierarchy and a conversion to binary is effected at the memory controller, thereby
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incurring an overhead of 24 core cycles (this is because the clock domain of the

memory controller is nominally about three times slower than that of the core).

3. Compiler. These approaches require compiler support:

CRNS This uses compiler support to realize a memory access granularity of 64 bytes (cache

line) and simply concatenates the tuple of address residues before accessing L1. In

other words, this is NRNS when the SELECT instruction is used.

CX X∈{L2, L3, MEM}. These are similar to CRNS, except that a conversion to binary

is effected before accessing the L2/L3/main memory respectively.

4. Rns sub

SUB This employs the single cycle overhead conversion of rns sub before the L1 cache is

accessed.

SUBM This is similar to SUB except that a binary conversion is effected before a main

memory access.

5. CLB

CLBX X∈{L1 N, MEM N}. This is similar to NL1 or NMEM, except that an N-entry CLB

is used in an attempt to hide the performance overhead of the conversion to binary,

although at a potentially higher energy cost. Upon a CLB hit, a single cycle conversion

is rendered, however, a CLB miss renders an access time equal to that of a binary

conversion as usual. Furthermore, CCLBMEM N is similar to CMEM but with an

N-entry CLB at the memory controller.

CLBY Y is of the form S N. This is similar to SUBM, except that the conversion to binary at

the memory controller is augmented with an N-entry CLB.

Space of valid configurations. Those listed above are deemed representative of an

exhaustive brute force sweep. For example, it doesn’t make sense to perform a conversion
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to RNS once a binary conversion or an rns sub has already been effected. Also, mixing

rns sub at L1 and conversion to binary at L2/L3 imposes constraints on possible cache

configurations1, hence, this work excludes them from our evaluation (although the careful

reader may reason about these tradeoffs from the analysis and evaluation presented).

Cache coherence. Cache coherence state is typically maintained at the granularity of a

cache line. With the exception of NRNS, NMEM and CLBMEM N, all the other configu-

rations proposed preserve locality within a cache line at the very least, when compared to

IBIN. To elaborate, Compiler approaches are specifically designed to preserve sequential

locality within a cache line. NL1 and CLB based approaches that effectively convert an

address to binary prior to L1 trivially preserve locality within a cache line. Rns sub based

approaches preserve locality for m4 consecutive bytes in general (Section 5.9.2); since all

the moduli (and m4, in particular) are greater than 63, therefore, Rns sub preserves cache

line locality as well. The conclusion is that all efficient and well performing configurations

proposed are also amenable to traditional, unmodified cache coherence protocols.

Summary. Intuitively, the first observation is that the Compiler approaches would

benefit from the best of locality-preserving properties of binary and the no-overhead nature

of rns concat, however, at the cost of requiring changes to and tight integration with the

software stack. Next, Rns sub approaches would benefit from both its locality-preserving,

as well as memory level parallelism inducing properties, at low cost. Finally, CLB based

approaches would mimic IBIN, however, at a significant energy overhead. The simulation

results below demonstrate in detail that the relative performance is Ideal > Compiler >

CLB > Rns sub >> Naive, with Rns sub rendering the most energy efficient architecture

along with the added advantage of requiring no support from the software stack.

1For example, given the cache configuration in our evaluation, the addresses X (0x4fab84d8) and Y (0x4fab84fc) when subject to
rns sub at L1 and conversion to binary at L2, map onto the same L1 index (36) but different L2 indices (165, 166). This makes enforcing
a generic non-inclusive property unnecessarily complex.
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5.10.3 DRAM Address Interleaving

The MAI of Section 5.10.2 directly impacts DRAM address interleaving. While an industry

standard memory controller policy is typically undisclosed, this work span the following

interleaving policies gathered from published research:

• Row: The LSB bits of the memory address decide the Column index, followed by the

Row index, Bank, Rank and the MSB bits decide the Channel (ChRaBaRoCo).

• Channel: This address interleaving is devised with the aim of boosting memory level

parallelism when a binary coded memory address is presented (RoBaRaCoCh).

• MinOp: This address interleaving splits the column indices such that exactly 4 consec-

utive cache lines (assuming a binary coded memory address) may map to a single row,

thereby striking a balance between row buffer hit rate and memory level parallelism [250].

• XOR *: These apply a permutation-based interleaving scheme (for reasons similar to the

above) to each of the interleavings presented above [108, 107]. The essence of this is to

set the bank index by XORing the bank bits with a selection of higher order bits.

5.11 Results from Memory System Simulation

5.11.1 Evaluation Methodology

We use pin [251] to generate a dynamic instruction trace that records the program counter

of each instruction, as well as any load/store address. Our pintool instruments all 32 bit

x86 gcc (-O2) optimized binaries from the SPEC 2006 [252] benchmark suite, with test

inputs. These traces drive a ramulator [253] based simulator, complete with an L1, L2, L3

non-inclusive cache hierarchy and DRAM main memory. The baseline configuration is

presented in Table 5.3.

We enhance the simulator to support the design space presented above, and use Mc-

Pat [254]/CACTI [255] to model energy overheads due to the Memory Address Interpreter.
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Table 5.3: Baseline Configuration

Parameter Dimensions
Core Inorder / OoO

OoO Fetch/Retire width/ROB size 4/4/128

L1 size/associativity 32kB/8-way
L2 size/associativity 256kB/8-way
L3 size/associativity 2MB/8-way

Load to use latency L1/L2/L3 4/4+12/4+12+31 cycles
MSHR per cache 16
Caching policy Non-inclusive/LRU

Core-Memory frequency ratio 3:1
DRAM JEDEC Standard DDR4 (1channel) / LPDDR4 (2ch)

DRAM address interleaving Section 5.10.3

DRAM policy FRFCFS prioritizeHit
Open page

Memory Address Interpreter Section 5.10.2
CLB size 128/1024 entries

CLB policy Fully associative/LRU
CLB hit / miss latency 1 cycle/binary conversion

Recall from Section 5.7 that memory addressing logic such as the MAI is assumed to be

error-free and can therefore be modeled with conventional MOSFET-based circuits. For the

purposes of the power and area model for the MAI, a 32nm/300K/0.9V/2GHz configuration

is assumed.

5.11.2 Cache

First, the following text demonstrates the intuition formed in the theoretical analysis of

Section 5.9 regarding the impact RNS addressing schemes have on locality. Figure 5.11

shows the cache misses per kilo instructions (MPKI) of RNS schemes, when normalized

to binary. Binary, captured by IBIN, is the normalizing baseline; rns concat is captured

by NRNS, with the effect of introducing the SELECT instruction captured via CRNS, and

SUB captures behavior of rns sub. The other MAI configurations from Section 5.10.2 do

not introduce any new addressing schemes.

As expected from Section 5.9, NRNS suffers a significant (18×/13× for L1/L3) loss in

spatial locality, whereas CRNS helps salvage this. SUB was designed to retain the spatial

locality that is present in the lower order bits of IBIN, and successfully, is more or less on

par with it. The interplay of addressing and temporal locality is rendered responsible for

cases where RNS schemes show superior cache performance to binary. Results from cache
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Figure 5.12: DRAM row buffer hit rate (higher is better) of SUB, normalized to IBIN, under two
example address interleavings. Row locality is completely lost in CRNS irrespective of interleaving,
and is therefore omitted from this plot. Row locality for SUB is relatively less impacted, but prefers
the first interleaving, by design.

configuration sweeps w.r.t. size/associativity/replacement policy are as expected. Therefore,

these are omitted as it adds no new insight to the architecture community.

5.11.3 DRAM

There are two aspects to DRAM performance: row buffer hit rate and memory level

parallelism exploited.

By design, one expects SUB to show somewhat similar row buffer hit rate to IBIN for an

interleaving policy that respects the locality preserving design principle of SUB, such as row

interleaving. Figure 5.12 shows its hit rate, normalized to that of binary, for two example

interleaving policies. CRNS, however, preserves spatial locality at a smaller granularity,

thereby exhibiting very low row buffer hit rate. For brevity, this chapter does not present

detailed results for NRNS because of its incredibly poor cache performance, and also omits

depiction of CRNS from Figure 5.12 because of its near zero hit rate. The interleaving

policy has a significant impact on row buffer locality.

On the other hand, because RNS addressing naturally permutes an address, a higher

degree of memory level parallelism is expected, especially for linear interleaving policies

such as row interleaving. Figure 5.13 demonstrates this, as one observes that the average
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(a) DRAM read latency normalized to binary: Row interleaving.

(b) DRAM read latency normalized to binary: Channel intlv.

Figure 5.13: DRAM read latency (lower is better) of representative RNS based schemes, normalized
to a binary scheme, under two example address interleavings. RNS based schemes naturally extract
more memory level parallelism. Together with row locality characteristics (Figure 5.12), read latency
of RNS based schemes are about on-par with or better than binary based schemes.

read latency is significantly improved inspite of an inferior row buffer hit rate for RNS

based schemes. This is one of the reasons why several interleaving policies (Section 5.10.3)

are deployed for binary based addressing systems, i.e., permuting the address bits reduces

bank conflicts and therefore boosts performance (other reasons not related to performance

improvement for such permutation are to avoid row-hammer [256] and security issues).

The results presented in this section are with an inorder processor, but similar trends are

seen for OoO as well. Also, DRAM scheduling and paging policies have an insignificant

impact on performance when compared to the impact due to address interleaving. Therefore

this section omits their results for brevity.

5.11.4 Overall Runtime

For completeness, the exhaustive set of 18 MAI configurations from Section 5.10.2 across

all 6 DRAM address interleavings from Section 5.10.3 are simulated, and for presentation
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Table 5.4: Most favored DRAM interleaving policy for an MAI configuration. In general, RNS
based configurations (such as NRNS) benefit from increased memory level parallelism especially
when linear address interleaving such as row interleaving are used and binary based configurations
(such as IBIN) benefit from permuted and XOR interleavings. Favorable interleavings choice is also
affected by row buffer locality and memory pressure differences (due to interplay between MAI
configuration, cache performance and processor configuration). If several equally performant choices
are available, an arbitrary selection is made.

MAI
Configuration

Inorder OoO

Ideal IBIN XOR MinOp XOR MinOp

Naive
NL1 XOR Channel
NRNS Row RowNMEM

Rns sub SUB XOR MinOp XOR MinOp
SUBM Row Row

Compiler

CRNS XOR MinOp XOR MinOp
CL2 Row Row
CL3

XOR MinOp XOR MinOp

CMEM
Compiler CCLBMEM 128
/ CLB CCLBMEM 1024

CLB

CLBL1 128
CLBL1 1024 XOR Channel
CLBMEM 128 Row RowCLBMEM 1024

Rns sub CLBS 128 XOR MinOp XOR MinOp/ CLB CLBS 1024

Figure 5.14: Speedup (higher is better) when compared to a naive approach of converting to binary
upon each L1 access (NL1 with row interleaving). Inorder cores are understandably more sensitive
to conversion latency than OoO cores. For both inorder/OoO cores, the relative performance of each
cluster is Ideal > Compiler > CLB > Rns sub >> Naive.
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(a) Inorder processor

(b) OoO processor

Figure 5.15: Overhead in conversion energy (mJ) vs runtime; lower is better for both axes (similar
to a pareto chart). SUB is the most efficient microarchitecture configuration that requires no support
from the software stack.
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purposes summarize the performance for each configuration with its most favored DRAM

interleaving policy (Table 5.4) in Figure 5.14. In deriving the most favored interleaving, no

distinction is made between workloads, i.e., the interleaving policy is varied only with MAI

configuration and is workload independent.

The performances are normalized against a fixed baseline (NL1 with row interleaving)

to be able to compare across configurations and interleavings, and the resulting speedups

are presented. Only the harmonic mean across the benchmark suite are presented.

[Ideal] For example, a conventional non-error-correcting binary core IBIN performs

2.84×/2.13× faster on average when compared to the baseline (for inorder/OoO processor

respectively, with a DDR4 DRAM), and favors XOR MinOp as its preferred address

interleaving.

[Naive] None of the alternate address interleavings make a noticeable improvement

to the performance of the baseline NL1. The 8 cycle conversion latency on every access

to the memory hierarchy is left unhidden, allowing it to dominate the performance trends.

NRNS/NMEM incur significant slowdowns because of their poor cache performance.

[Rns sub] SUB shows significantly improved performance over the naive approaches.

SUBM follows closely behind, due to slight decrease in exploited memory level parallelism,

coupled with its conversion latency at the memory controller.

[Compiler] The approaches that leverage the SELECT instruction effectively approach

IBIN by combining the best of binary (cache performance) and RNS (no conversion over-

head).

[CLB] Placing a 128 entry CLB before L1 allows for performance superior to SUB, and

a 1024 entry CLB seems sufficient to approach the performance of IBIN. However, placing

a CLB at the memory controller is rendered useless unless either the SELECT instruction is

used or rns sub is used to prevent an explosion of cache misses.

From an Amdahl’s law perspective, the amount of overhead and variation in memory

access patterns introduced by various MAI configurations has more weight than just the
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DRAM interleaving policy, which is to be expected. If one were to choose an unfavor-

able DRAM interleaving instead, the performance on average for each of the non-naive

configurations vary by less than 1%, although detailed results are omitted for brevity.

LPDDR4 is a likely candidate to be used in conjunction with low power microarchitec-

tures, but comes at a cost of increased row activation latency. Nevertheless, the insights

presented in this work hold even when an LPDDR4 DRAM is used.

5.11.5 Energy Overhead

Figure 5.15 presents the performance of each of the MAI configurations, when put in

perspective of how much additional energy they consume. For each MAI configuration,

their most favored DDR4-DRAM interleaving is chosen (Table 5.4) and the mean cycle

count and conversion energy overhead (mJ) across the benchmark suite are presented.

[Ideal] For example, at the bottom left is IBIN, taking the least number of cycles and

without any conversion overhead.

[Naive] NL1, as has been mentioned throughout this chapter, suffers from poor perfor-

mance and high energy consumption. NMEM/NRNS have little or no increase in energy

consumption due to conversion alone, but their performance suffers greatly.

[Rns sub] SUB/SUBM are the most efficient microarchitectures that do not require

support from the software stack for them to work.

[Compiler] While these approach IBIN, they are subject to software compatibility and

integration issues as discussed in Section 5.10.1.

[CLB] While placing a CLB at the L1 is more performant than SUB, it comes at a higher

conversion energy overhead. Placing a CLB at the memory controller must be accompanied

by either an rns sub addressed cache or a cache line addressed (SELECT instruction) cache.

Deriving a CLB configuration is similar to that of a TLB- or cache-like structure. For

example, while increasing the CLB size increases access power, it may reduce the number of

CLB misses, which also translates into energy savings on CLB miss repairs (ex: CLBL1 128
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(a) Inorder processor

(b) OoO processor

Figure 5.16: Slowdown of hypothetically faster binary convertors (4 cycles and 2 cycles as opposed
to the best known candidate: 8 cycles) when compared to IBIN. NL1 thats used everywhere in this
document is annotated as NL1 8 for clarity. Our most efficient microarchitecture technique that uses
SUB is still faster than these hypothetically faster convertors. It is also more energy efficient than
these, however, a quantitative comparison is not possible in the absence of concrete algorithms for
faster binary conversion.

vs CLBL1 1024). For brevity, this work limit a CLB configuration sweep to just these two

for demonstrative purposes; the reader should be able to easily infer points of tradeoff for

other CLB configurations.

MAI Area. Table 5.5 presents the area requirements of few key configurations. It is

concluded that the energy trends discussed above apply to area as well.

Table 5.5: Area requirement in mm2.

NRNS SUB CLB 128 CLB 1024 NL1
0 0.075 0.091 0.104 0.160
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(a) TLB hit rate normalized to binary (higher is better)

(b) Fraction of pages that do not cause a hard disk access, normalized
to binary (higher is better)

Figure 5.17: Virtual memory performance of CRNS and SUB when compared to IBIN. CRNS has
superior TLB hit rate owing to its higher memory access granularity, however, an explosion is seen in
the number of physical pages it touches, owing to its limited spatial locality granularity. As expected,
both TLB and page pressure of SUB approach that of IBIN.

5.11.6 Sensitivity to Conversion Latency

Throughout this chapter, an 8 cycle algorithm has been assumed for converting an RNS

tuple to a binary number (NL1), as it is the state of the art given that the bases must be

amenable to RRNS error correction. Nevertheless, this work also evaluates the relative

performance of hypothetical conversion algorithms that take half as many or even a quarter

of the cycles. For clarity, these are differentiated via subscripts (NL1 8, NL1 4, NL1 2).

Figure 5.16 puts their performance in perspective of two representative MAI configurations:

IBIN and SUB. Recall that SUB presents the most efficient microarchitecture that does not

impose restrictions on software. Therefore, for this analysis, IBIN is chosen as the baseline.

SUB and NL1 8 are also presented to put the performance of these hypothetical convertors

into perspective. Relative performance of the remaining MAI configurations can be easily
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inferred from the previous result sections.

Not only are these hypothetical faster convertors less performant than the schemes pre-

sented in this work, but would also be less energy efficient. While a quantitative comparison

is not possible in the absence of concrete faster algorithms, one can expect their energy

overhead to be rather close to NL1 8 (and certainly much more than SUB) from a functional

standpoint of the process of converting to binary.

5.11.7 Virtual Memory

Certain RRNS based architectures may find it necessary to integrate with a virtual memory

(VM) subsystem. There are two aspects to VM performance: TLB hit rate and page

pressure. Under an idempotent virtual-to-physical transformation, this work uses the reuse

distance [257, 258] mechanism to estimate the TLB hit rate in a 512kB structure and to

estimate page pressure using an 8GB DRAM, assuming a page size of 4kB (as is common

on Linux systems). Page pressure is quantified by measuring the number of pages that

have already been brought into main memory as well as the number of pages that need to

access secondary memory (such as a non-volatile disk), as they may either have not yet been

allocated a physical page frame or had been evicted to make way for newer pages.

Figure 5.17 highlights these for representative RNS schemes, when compared to binary.

Given its 64 byte access granularity, CRNS exhibits high TLB performance thanks to

sequential locality in programs. However, this granularity is rather small at the page level,

causing an explosion in the number of pages it accesses. As described in Section 5.10.1,

CRNS would have to be extended into the runtime system (or a different page granularity

should be used) in order to attain low page pressure.

SUB, on the other hand, performs very similar to IBIN on both counts. The reason for

its relatively higher page pressure when compared to binary is that 4kB pages have an offset

of 12 bits, whereas the residues in this work are (or specifically the fourth residue) 8 bits

wide, thereby leading to a gap in locality between rns sub and binary. Choosing a wider m4
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RESO [259], REDWC [164], RETWV [165], SCCSA [260], SHA [171], DIVA [187], SITR [261], Timing Speculation [185, 186]

Figure 5.18: First order comparison of area overhead and energy-delay product (EDP) of various
mechanisms for computational error correction, depicting the superiority of RRNS. Computational
error correction techniques use a combination of spatial and temporal redundancy techniques. While
temporal redundancy allows for a low area overhead, they suffer from a significant performance
penalty. Timing speculation techniques seem more efficient than RRNS, however, their error model
assumes all bit errors manifest as circuit timing errors, which is not sufficient to work with ultra low
energy logic devices.

would result in an interesting tradeoff as it may change the power-performance-reliability

characteristics of the RRNS core, but from a memory systems point of view, it would

enhance the spatial locality properties of rns sub which directly translates to improved cache

performance, DRAM row buffer hit rate and virtual memory performance.

5.12 Summary of Related Work for Chapter 5

Computational error correction. Figure 5.18 and Section 5.2 summarize various tech-

niques in comparison with RRNS. RRNS is generally considered superior in terms of

capability and efficiency for computational error resilience. State of the art adoption and

research in the industry also claim the superiority of residue based resilience [188, 190].

Approaches that employ timing speculation [185, 186] may seem superior to RRNS at

first glance. However, the error model that can be supported by an RRNS error correcting
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architecture is orthogonal to theirs, if not broader. For example, razor [185] uses conventional

transistors, therefore lowering Vdd lowers MOSFET switching speed significantly, resulting

in a large frequency drop, which could cause setup time violations that they handle via a

delayed latch mechanism. They assume that any error manifests itself as a timing error.

Similarly, decor [186] uses a delayed commit approach (with rollback support) to handle

violations in timing margins. However, with emerging devices (Section 5.1), Vdd can be

lowered to few tens of millivolts with a relatively lower frequency loss, meaning that

operating at the resultant thermal noise floor leads to stochastic, intermittent bit flips, which

cannot always be captured as circuit timing errors. Unlike such approaches, RRNS error

correcting architectures can not only tolerate such errors in the data path, but also in the

control path between memory accesses.

In terms of being able to tolerate control path errors, approaches such as DIVA [187]

that replicate parts of the pipeline are capable. Their design provides recovery by having a

simple core recalculate results of an out-of-order core. In this approach, the simple core is

assumed to be error-free. This is similar to a ”double-modular-redundancy” approach with a

rad-hard node, implying a relatively high overhead. Furthermore, if the rad-hard simple core

is instead prone to error, checkpoint and re-execute methods would need to be employed,

similar to the IBM POWER6/7/8 and z10/z196 processors [188, 189, 190, 191] and various

Intel Corporation [192] and Sun Microsystems based mainframes [193]. On the other hand,

RRNS is able to tolerate errors in its redundant as well as non-redundant computations.

Finally, a vast majority of these related work are at the circuit level and can be augmented

into RRNS-based architectures for potentially enhanced reliability characteristics.

Prime number based indexing. Kharbutli et al. [137] propose using prime numbers for

cache indexing to reduce conflict misses. However, such indexing introduces fragmentation

that can only be amortized by higher cache capacities. They therefore recommend using

their technique only for larger caches (such as L2/L3). Furthermore, their technique isn’t

applicable to DRAM addressing.
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5.13 Summary of Contributions of Chapter 5

This section summarizes the contributions of the third and final part of this thesis, as

explained in Chapter 5.

1. Develops microarchitecture, ISA and RRNS centered algorithms towards a

Computationally-Redundant, Energy-Efficient core design.

2. Designs RRNS-check-insertion heuristics to optimize performance/energy/reliability

tradeoffs.

3. Derives an estimated lower limit on signal energies via stochastic fault injecting

simulation.

4. Extends an RRNS microarchitecture - one that is capable of reliably functioning with

ultra-low energy logic devices that operate near the kT thermal noise floor at tens of

millivolts - to support efficient memory hierarchy access.

5. Proposes and analyzes an efficient, novel translation scheme (rns sub) with locality

properties similar to that of binary, but with a fraction of its performance/energy

overhead.

6. Reduces the performance impact of the naive binary approach by using a TLB-like

structure called the Conversion Lookaside Buffer (CLB) to cache conversions.

7. Proposes a technique to improve spatial locality in the native, zero-overhead translation

scheme (rns concat) via a hybrid compiler approach and a modified programming

model.

8. Constructs a design space from the schemes proposed and from the analysis of the

resultant memory access pattern behavior, along with a detailed cost-benefit analysis.
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CHAPTER 6

CONCLUSION

The landscape of modern computer architecture has changed significantly over the past few

years. This is driven by a combination of two forces. On one hand, emerging applications

are pulling compute and memory system demand in unprecedented directions. On the other

hand, technology scaling has not benefitted recent computing systems in the same manner

that it did a couple decades ago.

Figure 6.1: Scope and overview of thesis.

At the resulting intersection of an increasingly important set of data-irregular applica-

tions, and bottlenecks induced by Moore’s law-era physics, lies the reason this thesis exists.

This work finds that mitigating these challenges requires non-traditional solutions that tackle

various forms of memory access irregularities. To this end, this thesis proposes architectures

that improve energy efficiency and performance by intelligently reducing data movement

through the memory hierarchy for applications that exhibit data-irregularities due to sparse

accesses or due to computationally error-tolerant post-Moore processing. Energy efficiency

and performance of data irregular applications can be improved via near memory and near
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processor sparse data stream acceleration and address remapping.

A visual overview of the organization of the scope of applicability of the techniques

presented in this thesis is summarized in Figure 6.1.

Fundamentally, I hope this thesis serves as proof and as an inspiration to designers of

future efficient computing systems to innovate simultaneously across multiple levels of

abstractions - from traditional and emerging device technologies all the way to applications

from a spread of domains - without losing the benefits and rigor of specialization in a chosen

field of interest.
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[69] U. Borštnik, J. VandeVondele, V. Weber, and J. Hutter, “Sparse matrix multiplication:
The distributed block-compressed sparse row library,” Parallel Computing, vol. 40,
no. 5-6, pp. 47–58, 2014.

[70] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse matrices in matlab: Design and
implementation,” SIAM Journal on Matrix Analysis and Applications, vol. 13, no. 1,
pp. 333–356, 1992.

[71] Gcc std::map, https : / / gcc . gnu . org / onlinedocs / libstdc /
libstdc-html-USERS-3.4/stl__map_8h-source.html.

[72] M. Deveci, C. Trott, and S. Rajamanickam, “Performance-portable sparse matrix-
matrix multiplication for many-core architectures,” in Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2017 IEEE International, IEEE,
2017, pp. 693–702.

[73] A. Kyrola, G. E. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph computa-
tion on just a pc,” USENIX, 2012.

[74] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric graph pro-
cessing using streaming partitions,” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, ACM, 2013, pp. 472–488.

[75] A. Barredo, J. C. Beard, and M. Moretó, “Poster: Spidre: Accelerating sparse mem-
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