High-Speed Formal Verification of He

terogeneous Coherence Hierarchies

Jesse G. Beu, Jason A. Poovey, Eric R. Hein, Thomas M. Conte

Georgia Institute of Te

chnology, Atlanta GA

jesse.beu@gmail.com, japoovey@gmail.com, ehein6@gatech.edu, tom@-conte.us

Abstract

As more heterogeneowschitecture solutions co
tinueto emerge, cadrence solutions tailored for these
architectures will become mandatoryCoherence h
erarchies will likely continue to be prevalent in future
large-scale shared memory architectare However,
past experience has shown that hierarchical coherence
protocol design is a netrivial problem, especially
when considering theverification effort required to
guarantee correctness.

While some strategies do exist feerification of
homogenos coherence hierarchies, support forare
sonableverification of heterogeneous coherencerhie
archies iscurrently unavailable. Ideally, hierarchical
coherence protocols composed of Obuilding bloekO pr
tocols should be able to take advantage of incremental
verificationto sidestep tle statespace explosion plo
lem which hampers any largscaleverification effort.

In this work, we prove this can be accomplished
through theuse of theManagerClient Pairing (MCP)
framework which providesencapsulation angherms-
sion checking supporthat enablesa form of state
space symmetry When combined with a inductive
proof, this ensuresthe validation propertiesof proper
permissiondistribution and livelocldeadlock freedom
are enforcedby anyhierarchical composiion of MCP
compliant protocols Demonstration of this methodo
ogy through the MurPhi formal verifier shows several
orders of magnitude improvement in verification cost
compared to full hierarchy verification.

1. Introduction

It is well established thapower constraintshave
cause a major paradigm shift in computer architeet
towards parallel processing for performance scaling.
With it have comenew opportunities and design spaces
for architects to explore. Among these are heteregen
ous architecturesvhere on-chip network and proce
sor diversity can bexploited for performance benefit
or power/energy savingd-b]. Such systems benefit

from thedesignof diverseinteractingcoherenceroto-
cols, where each protocol is optimized twke al-
vantage ofproperties of a homogeneous region within
the overallheterogeneouarchitectue. This comes at a
cost however, in that the design and verificatiomeo
plexity of such systems is substantially higher than that
of their homogenousoherenceounterparts.

Despite this cost, the benefit okterogeneousoce
herencehas resulted in reaborld applicatios of co-
herence heterogeneityThe Wildfire architecture, for
example,was built using the existing first level post
col of the Sun E6500 imlarger hierarchyhat enabled
Coherent Memory Replicatiofor improved noded-
cality [3]. The Piranha architecturél][had an intra-
chip coherence management mechanism wesinte-
grated with an independeimter-chip coherence prot
col engine. Thisallowedfor efficient use of orchip
caches and fast intichip data transfers while another
DRAM directory-based protocatould beleveraged to
enable scalability and performance at the Hotdp
granularity. The HP Superdome [5] also employed a
similar strategyasWildfire, but with a different goal in
mind. An interchip communication layer interfaced
the native intrechip protocol to a higheevel direco-
ry protocol. The resulting systenwvas able to restrict
message broadcast scope to the local protocol in many
casesgenabling the use of commodity pafi®., those
with OgluelessO multiprocessor buses) largescale
systemwhile maintaining pgormance Theseexan-
ples suggest thaheterogeneousoherence hierarchies
will become more attractivie@ the present eras cu-
rent technology trends continue

Another factor motivatindneterogeneous coherence
supportis the emergence dPartitioned Global Ad-
dress Spac@PGAS)languages, such as X1, which
explicitly express physa locality of memory through
placesandprocessor/thread affinitypepending on the
relationship between the size of the address spaces
assigned to a placthe number of ative threads ope
ating within a place and the available architectural
resourceslocalizedcoherence protocolsan bebenef-
cial. Localizedprotocols can beptimized for apar-
ticular placeds partition of the address spacé arch
tectural real estateyhile still maintaining global @

Saaasess
Estas

Figure 1 - Example of a heterogeneous multi -chip
system that would benefit from heterogeneous
coherence hierarchy support.

dress space coherenwdth respect to other localized
protocols

The desigersof future architecturesan also benefit
from coherence heterogeneityConsider, for example,
a production heterogeous chip that is partitioned
acrossseveraldifferentdevelopmenteams Eachteam
wants todesign its owrhighly optimized andspecié
ized coherence protocol, tailored and verified doe
architectural region. Eactesigngroup couldwork
independentlyif a well-defined heter@eneous cohre
ence compositionframework were availableto inte-
grate the protocols into a finaberified hierarchical
protocol as shown irFigure 1. This conceptof dis-
tributedcoherence protocalesigndoes not have to be
limited to a singlechip. With a composition fram-
work, multichip systems comprised of diverse chips
(GPUs and CPUs)from different vendors, could be
combined and erified into a global coherence poet
col.

Before implementing a coherence protocol indaar
ware, it is important that ghprotocol beverified Giv-

en the extreme rate of processor requests that a-prot
col handles per second, even the smallest flaw will

inevitably lead to a system failure. An incorrectly-d

signed coherence protocol could cause the chip to

deadlock or corruptlata by allowing multiple prose

sors to modify the same block simultaneously.eOn
approach to formally verifying a protocol involves
modeling the protocol components and examining ev

ry possible reachable state for invalid behavior. The
total number of gibal states to be explored increases
exponentially with every new node, message type, or

state that is added to the protocol.

Intractable verification complexity has the potential
to dissuade architects from using hierarchical cohe
ence approachesgspite their many benefits. While
many strategies and tools already exist to assigtan
verification effortof flat protocolg14-20], hierarchical
coherenceébreaks these tools bgxacerbahg many of
the problems associated with verification, suchthes
state space explosioproblem[10]. Recent publia-

tions [B,11] have demonstrated very powerful ttec
nigues to accelerate verification for hierarchical cehe
ence protocols, but they are limited by a fundamental
assumptionthat the hierarchyeing verifiedis com-
posed ofhomogenousindseltsimilar protocols Such
an assumption severely limits the utilijynd scopeof
hierarchical coherencéor heterogeneus designsor
PGAS models Extending verification to hierarchie$
distinct coherence protocols is arthgproblem. How-
ever, & discusseckarlier, there will be a strong desire
for flexible, heterogeneousoherence hierarchies in the
near future A solution to the verification problem
must be found.

We believe that aecentlypublishedframework for
coherece compositiorolds the key tdeterogeneous
hierarchy verification The ManagerClient Pairing
(MCP) composition frameworklp] enables rapid e+
velopment of heterogeneous coherence hierarchies
through the definition of a standardized protocolrinte
face and component protocol encapsulatiom [12],
the authors demonstratengethodology for composing
heterogeneous protosolith minimal effort and pe-
sent results for a variety of mutiered coherence hie
archies. They do not, however, make any claine-
garding verificatiorof these hierarchies

In this work, we extend MCP by provinghat using
MCP complianfprotocolsin an MCP hierarchy enables
rapid verificationthrough a form oprotocol symmetry
[10]. This avoids the need for fultate spacexplora-
tion, reducing verification cost from an intractably
large combinatoriaspacedown toverifying each cm-
ponent protocol independentlyThe contributions of
this work are as follows:

¥ Introduce a new form of protocol structuralrsy
metry calledencapsilation symmetry and show
how it canreduce verification cost

¥ Provethat MCP supportsencapsulatiorsymmetry

and thuscan beleveraged as werification comp-
sition framework for heterogeneous hierarchies
whenthe hierarchy is composed fdrmally veri-
fied MCP compliantprotocols

¥ Presentremote proxy clienas a techniqudor
porting pre-existing, verifed protocols toMCP
compliance with little design and verification
overheadAs a motivating examplehis technique
is applied to the BroadcastOSI protocol from
GEMS|[6] to enable its integration with a Direet

ry-MESI protocol to form a MCP hierarchy

Show through the MurPHbrmal checker[14] that
this new MCP hierarchyis verified. Further,we
use this result t@ompare the cost of fubtate
spaceexplorationwith that of independent oo
ponentverificationvia encapsulatiorsymmetry

¥

233964 &

/- 0984 Y&

o) Cor) C)

| RZHJ7 IRy

' - 8YRA9Yr
LT

) =

HEEE

Nelealeales

Figure 2 - Manager-Client Pairing coherence hierarchy organization with parts labeled: Manager, Client,

Tier, and Realm for the Coherence Domain.

The remainder of the paper is organized as follows:

Section2 outlines the related work. SectiorpBesents
an overview of the MCP frameworkSection4 ex-
plains thestate enumeration verification strategy in
preparation for Sectiob, which presents a proof for
verification through MCRomposition Section 6 ot
lines how to adapt existing protocols to MEP can-
pliant via a remote proxy client.
MurPhi verification results followed by a conclusion in
Section 8.

2. RelatedWork

Due to the importance of verification, there is a large

body of related work available. For brevity, thixse
tion will only mention those most closely related to the
problem ofhierarchical coherence verification
LadanMozes and Leiserson [11] propose a diea
lock-free, treebased coherence protocol in order to
ensure forward progress in a -fate network. By
enumerating invariant properties that ensure all- chi
dren in the treeare coherent with parents, permission

guarantees can be made with respect to exclusive writeprivate cachesj12].

permission, while supporting multiple readers.
An important work that easdsomogeneousiera-

chical coherence verification is Fractal Coherence [8].

In this wak, Zhang et al. propose a trbased cohe
ence protocol, with the intention of simplifying cohe
ence verification through perfect ssimilarity. A

Section 7 presents

The recursive nature of the interésc proposed by
MCP is analogous to theelf-similarity of fractal ©-
herenceOs kernel protocol.

The most important distinction betweenior work
and this work is that prior work wasspecifically c-
signed withhomogeneityas a requirement Neither
work discusses the benefits bkterogeneousohe-
ence compositionor why it is an importantonsidea-
tion. In fad, both [8] and [11] arexplicitly incompa-
ible with heterogeneity since they both rely heavily on
homogeneity in their proofs. It is worth mentiog,

however, that because these techniques do produce

verified coherence protocgltheywould becompatible
as a componemithin an MCP coherencdierarchy if
madeMCP Compliant

3. Review of MCP framework

ManagerClient Pairing (MCP)eases hierarchical
coherence protocol desidoy distinguishing manager
agents, those that manage permissi@ng. drectory),
from client agents, those that hofegrmissions (e.g.
By pairing the client agent of a
higher protocol with the manager ageitthe lower
protocol, the clientagent behaweas a permissions
gateway for the paired managerOs protocthis is
possible because MCP defineparmissiorchecking
algorithm that enable component protocols to oo
municate witheachotherthrough a gemé queryand

fractal based coherence protocol, where children areacquire interfaceeliminating theneed toexposeinter-

coherent with their parents, can verified throughthe

nal operatiordetailsoutside the protocolOs scopBy

validation of only the kernel coherence protocol. The linking protocok together,coherencehierarchy com-

authors also describe how a kussed version of the

position can distribute the coherence responsibility

protocol could also be executed through fractal buses.throughout the hi@rchyOsoherenceaealms The top
Fractal coherence has many similar features to MCP tier coherence realnencompassesll users of data

%)
<I(—_

=068$)>6+$)]

1$82+3
7
1
4$56%7"

1
4$56%72+3
1
1

=083)>6+¢

(b)

Figure 3 BMCP Interface for (a) lower processor
tier and (b) top memory tier

within the coherent memory systelmeing monitored
by the hierarchical protocolEach lowettiered cohe-
ence realmmonitors successively smaller subsets of
node coherence.Figure 2 shows an example MCP
hierarchy labeledwith MCP terminology.

Due to the general interface definition and resultant
low level of integratiorrequiredbetween realmspre-
vious work[12] demonstrateé that component cohe
ence encapsulation isell preservd, meaning the e
sign detailsof the protocols used to comprise the-sy
tem are largely opaque with respect to one another
Furthemore becausethis interfaceOs functionality is

4.1. State Enumeration

Reachable state enumerationaicommonstrategy
employed incoheence protocol verificatiothat aub-
mates the process. First, the protocol state machine
and surrounding communicationediumaredescribed
in a protocol descriptionlanguage, such aslurPhi
[14]. A set of invariantss then defined to establish
what conditions must bmet for the systerto be valid
(e.g.,only onemodifiable copy of a cache block exists
at any tim¢. Relevant prameters regarding thessy
tem configurationnumber of clients, manager organ
zation, network propertiesetc.)are providedas well
as an initial system state from which therification
process can begin. All possible states therexhaus
ively generated anéhvariantschecked following the
actions provided in the descriptionThis can be done
by either @plying adepthfirst or breadtkfirst search
where nexistates are generated by applying all poss
ble valid rulesto the current stat(e.g., new request
generation, request/response event delivesic.)
Each new state checks the invariants,ahdo viola-
tion occurs, marks the currestate of the system as
reached(this isoftenimplementedhrough the use of a
hash table populadewith acompressedtate notation
If a futurestatesequence encoungea state that fg
already been reached, that branch of the search can be
terminated since it has previously been verified.
Eventually, all branches will terminatand if no vio-
lation has been encounteydtie protocol can bea}
beled as verified.

very similar to the processor and memory interfaces in 4.2. State-SpaceExplosion and Symmetry

a conventional flat deerenceprotocol,the majorityof

the effort required to adhere MCP complianceis a
straightforward onéo-one mappingbetween MCP
actions andalready present coherence actiongVe
definea protocol to beMCP complian if it is a vern-
fiedinvalidationbasedcoherence protocol (see Section
5) that only communicates with the external world
through upper (memory) and lower (processor) MCP
interfacesas shown irFigure3.

4. Reachable State EnumeratiorDverview

Before constructig the complete proof for MGP
hierarchyvalidation an understanding dhe undery-
ing verification principles is required. In this section
we introduce the problem oferification through
reachable state enumerationVe discuss verification
through enummtion, review the statespaceexplosion
problem andexplain howpast research hasitigated
this problemthrough the use oprotocol symmetry
This leads to our key observation, that the staigce
explosion due to hierarchical protocol interactions ca
also be mitigated if viewed as a form of symmetry

For everreasonablysimplecoherence protocols, the
statespace that needs to be exhaustively searched can
becomeintractable quickly This isdue toall the pc-
sible state interactions betwedne clients state na-
chines, manager state machimad various states of
message delivery and orderinghich is aggravated
rapidly byhow many node§.e. cores)are being md-
eled. While prior research hpsoven that modeling of
a singlecache block address sufficient to verify a
coherence protocgll0], there is ngproof that a large
scale system can billy verified from a similar,
scaleddown system. As each additional node is added
to the system, theumber of possiblglobal states m-
creasesexponentiallydue toall possibleinteractions
between the newbadded clientOs state machine (and
messages) with the previous systemOs-spaiee, as
well as the additionapossible manager states from
extendingthe tracking mechanisrno encompass the
new nod@stracking For an example of the latter,
considermoving from 8 bits to 9 bits ina sharer bit
vector thisresults in an increase froni ® 2° possible
vector statefor each manager statihat requiresbit-
vector information Because of the combinatoriahn

Figure 4 - Example of state space explosion when adding 2 additional nodes to a 2 -node MSI protocol.

ture of the state space probleme see inTable 1a many other parts of coherence protocol design, éhclu
dramaticincreasein the number ofeachablestatesas ing Oaddresses, data values, memory medsl@and
the client count increaseJhese results were collected messageids.O In this work we extend this to enan-
from a full state space exploratizusing MurPhi. Fig- passthe encapsulationsymmetriespresent in hiemra

ure 4 presents a visual representation of what happenschies composed of independent, weticapsulated
during statespace explosian This example only protocols
shows the reachable states after the first two possibl
rules are applied to an overly simplified MSI protocol
consisting of 2 nodess. 4 nodes. Encapsulation symmetry is different from state
Due to the oftershomogenous nature of client state symmetry in that itdoesnot manifest asa result of
machines in a coherence protocsthte symmetrias protocol homogeneity. Rather, encapsulation sy
been shown to be a powerful way to combat the state metry happensvhenportions of the global state repr
space explosion problenand canredue the state sentation can be proven beindependent frm other

.3. Encapsulation Symmetry

space searchcopeby as much a®0% [LO]. In this pars of the global state. The simplest examplehis
approach, severalistinct states can be shown to bve phenomenon woulde the statspace exploration of
lap with one another throughe exploitation of stra- two completely isolated state machines, n and mi-ope
tural symmetriesn the protocolOs desjgsuch asab- ating simultaneously. If the size of eastate na-

stractirg sharer client ID information to a sharer client chineOsstatespace could be expressed sizg and
count For examfe, the 4-node composite states sizg,, the state space of both operating simultaneously
{SS,1,0},{1,S,S,0}and {O,S,S]} are symmetriowith is (size * sizg,). This is evident becausesimple san

one another because a simple substitution can showcould explore the entire space by repeatedly applying a
that applying the same sequence of rules that lead fronsingle rule to n, followed by full exploration of state
the initial state teeach of these statesll yield ident- machine nds space

cal resultsif nodeids arerotated/mixede.g.{l,S,S,0} To express this another way the overall state of a
becomes {O,S,S,I} if node 0 and node 3 are switched) systemis representedhs a string, the state space#
Again, because of the homogeneity of the clistate each independent state machitem be expressed as

machinesthere is no behavioral differene¢the high- strings string,, and string,. The entire state space of
er-level descriptionof the protocb behavior; specific these operating simultaneously cotlénbe expressed
nodeidentity information isunimportant. In this way, as the combination of all valistring,, strings conca-

global state can be viewed as a combination rather thamatedwith all valid string, strings. Figure5 andFigure

a permutation.In short,if two systenwide states are 6 showthe symmetryin the state spaceésually for a

symmetric with one another, only one has to be verified pair of simple state machines.

to automattally verify the otherThe authors of [10] Leveraging this kind of symmetry for coherenge h

demonstrate that the notion of structural symmetries erarchy verification would be extremely powerful in

extends beyond just node ID abstraction to encompassombating tke stde space explosion problemllowing
eachcomponentprotocolto be verified independently

Table 1 B Verification cost of Directory -MESI and and then merged However, this symmetry requires
Broadcast -MOSI protocols using MurPhi proving that the integrated protocols are sufficiently
Protocol 7o States | Time o Veriy [5] isolated from one another through some form of paca
2-client Directory-MESI 599 0.10 sulation. Additionally, valid merging would requirall
Toen, B:[ggggmgg: MR U possible concatenation combinations of these state
5-client Directory-MESI 1,345,019 91.7§ spaces to guarantee invariant violation freeddsec-
g-c:@em PITEGOREMES] 26,361,914 15,980.7(tion 5 will develop this furtherand demonstrate that
3;::2; S[‘;Zﬂﬁiiimgii 16%’,15272 2;%3 the interfacedand pemission summarizing naturef
4-client Broadcast-MOS| 4,307,049 331.82 MCP compliancewill produceencapsulation symmetry
SelenBoadeatNOS | 1281 38m0 iy the state spadkat can safely bieveragedor rapid

verification

Figure 6 - Full state space exploration of both

state machines operating simultaneously, where black arcs

represent transitions using the !execute a single n rule, followed by full m exploration" methodology, and red

dotted lines show a few of the alternative paths that would encounter redundant states

5. Formal Verification Strategy for MCP

We propose the use of MCP as a framework for
high-speed formalverification of largescale hiera-
chical heterogeneous protocols. In this section we will
prove thatwhenformally verified MCRcompliant po-

in the space.

4) ! reachable global states in a protocol x, there are no
states without possible exits (deadlock) and no condition
where a giverdatablockis locked by one node such that

it is permanently prevented from being accessed by other
nodeg(livelock) [20].

As mentioned previously, evdefine a protocol to be

tocols areassembled into a hierarchy and connected MCP compliantif it is a verified invalidationbased

through MCPRinterfaces the hierarch is alsoverified.

coherence protocol that only commune&satwith the

We cefine @erifiedd to mean a protocol can guarantee external world througMCP interfaces.

the following properties: (1) There can be at most one

lowesttier client with write permission to a block of
data; (2) There can be one or more lowest clients
with read permission to a block of détao other lav-
esttier client has write permission@) read are gua
anteed tosupply therequestor with thenost recently
written data valuat the time the read was inserted into
the global order(4) The systenis deadlock and lie-
lock free. These povide a guarantee of coherence-pr
tocol design correctness.

Definition 1D
A protocol is said to be verified if:

1) ! reachable global states in a protocol x, a hode may
have write permissions to a block iff there are no other
nodes with read or writeggmissions to that block

2) ! reachable global states in a protocol x, one or more
nodes may have read permissions to a block éfettare
no nodes with write permissions to that block

3) / reachable global states in a protocol x, read requests
to a black obtain the value written by thmost recenpre-
vious writein the global order, w.r.t the readp that
block

5.1.Theorem 1 b Two-tier MCP composition and
verification

WhereR(u,l) := Coherencerealmfrom interfacing oupper
tier MCP compliant protocol u with lowearer MCP compi
ant protocol | through pairing ofa u-client with the I-
manager.

Lemma 1D MCP permission distributioensuresR(u, I) will
satisfy conditions (1,,2)

Lemma 2B For R(u, I), MCP GetGetAck and De-
mand/DemandAckpairs do not violatecondition @); all
requests are eventually satisfisidceboth probcols u and |
have been previously verified

Theoreml B " ! u!/ |, where u and | are MCP compht
protocols,R(u, 1) is also verifiecand MCP compant

The supporting lemmas for Theorem 1 have two
main themes: Lemma 1 is concerned with proper
distribution of permission guarantees to ensure that
conditions 1, 2 and 3 of verification are enforced (one
writer, multiple readers, read consistency) while
Lemma 2 focuses on livelock/deadlock adherence. In

Coherence
Fwd Msg

Coherence
Wite Msg

e
-

7) GetExclusiveD
(Gientaa 1]
[Warmegerc 1]

Coherence
Data Msg

(o0 1]
Manager B | |

ClientAl [E]
Manager C [M
I

10) GetExDAck

Manager B | O

Coherence
Invalidate Msg (
[CclientB0 [s] [Ccliente1 [o] [clientco 1] [CclientBo T1]
["Processor | - | [Processor | -] [Processor ||
A\ A A\ A
N Daawss

Coherence
Wiite Msg

Coherence
WriteBack Msg

2) GetExclusiveD

[clientco |
[Processor [

é

Data Msg

[[clientB1 1]) Coherence

[Progessor []

(a) (b)
Figure 7 - Permission distribution example for an MCP composition

Lemma 1, Condition 3 is satisfied because the and a GetExclusiveDAcks issued across thCP
manaer/client pairing is located at the ordering point interface to Manager C. Finally, Manager C can
for its realm, ensuring global ordering of reads and resume processing of the original coherence write
writes is maintained throughout the hierarchy. message and respond with a coherence data message.
Conditions 1 and 2 are fundamental properties of MCP Upon reception at Client CO, the write action is
composition, and are discussed in depth in priork complete. This demonstrates that despite having
[12] which details the permission allocation algorithm multiple discrete, encapsulated protocols that treat each
and how the permission inclusion property described other as black boxes, permissions are properly
by LadanMozes and Leiserson in [11] is implemented enforced across the entire hierarchy because of MCP.

by MCP. The realamiss example from [12] Lemma 2leverags the fact thatall incoming Get
demonstrating this is reproduced here for actions observed by thdower-tierOs loweinterfaces
completmess. (e.g.processoraches) will be satisfied eithéx) locd-

In Figure 7, the sequence of MCP interface events ly by the lowettier, (b) remotely by the uppettier
and corresponding coherence actions to acquire datahrough the lowetierOs upper interfacer (c) by
across realm boundaries is shown, starting with (a) thememoryvia issuance o& Get actionfrom the upper
request and demand chain of events and (b) the ackierOs uppenterface withmemory. Similarly, all up-
event sequence replying to these requeatsd pertier lowerinterfaces not connected to the lowiir
demands. realm will be satisfied either (d) locally by the upper

First, the processor paired with Clien® @iscovers tier, (e) remotely by the lowdfer through theMCP
it has insufficient permission to satisfy a write (1). interface or (f) by memory via the uppierOs upper
This resits in a GetExclusiveDcall to Qient CO (2) interface. In althese instances, eventual completion is
which spawns a coherence message to Manager Quaranteed since memory will always respond and the
requesting the data and write pession. Following uppettier and lowettier protocols are guaranteed to be
the MCP algorithm, before responding to the livelock and deadlock free prior to composition as a
coherence request the paired client Al is consulted (3).condition of beingMCP compliant All requess are
Since Al does not have sufficient permissions, saisfied locally, satisfied by memongr deferredto
Manager C temporarily stalls the coherence requestanother protocol thatan guarantee eventual response
from CO and Manager C issues a GefEziveD to its to any request Additionally, due to the trebke or-
paired client A1 (4). This results in coherence traffic ganization of an MCP composition and permission
that leads to Client Aemandnhg the lower realm distribution, there is no possibility of a cgcin which
managed by Manager Bo supply data and self two MCP compliantprotocols are waiting on eachhet
invalidate (6). Coherence messages are sent tcerto eventually respond.
invalidate all nodes in the realm andquest data Since MCP compliantcomponentprotocok arein-
writeback (7a and 7b). dependentlyverified, we know thatno Get actioncan

At this point traffic begins to flow back towards the be delayed indefinitelgince Get actions ardunction-
originating request through reply acknowledgments (8a ally equivalentto cacheactions (read, write, evict)in
and 8b). Coherence traffic flows back to Manager B, an MCP compositionGet requests are either satisfied
enabling it to transition to the invalid state and supply locally, deferred upwards via another Get request
data to its paired client A0 (9). The paired client can which in turn will recursively do the same until sati
now proceed by taking its native protocol action, fied, or deferred downwards via Bemandrequest
forwarding data to Al and self invalidating. Upon (cacte-to-cache forwarding behavior, for example)
arrival at Al, the client state transitions to Exclusive This ensures thatllarequess will make forward po-

gress aghey traverse upr downthe tiers untilsats-
fied, proving livelock is nofpossible Finally, because
MCP does not introduce new statesmessageto the
component protocolsno new state without exit can
arise or be reached, protecting against deadlock.

MCP components meetl the conditionsfrom the
definition of verifiability. Rules regarding read pe
mission and write permissiatistributionfor all lowest
level clients (i.e., cachesre enforcedwhile guara-
teeing livelock and deadlock freedom for all reachable
states Therefore Theorem 1s proven a composition
of an uppettier MCP compliantprotocol and a lower
tier MCP compliantprotocol, connected through an
MCP interfacewill properly distribute permissions and
data while retaining livelock and deadlock freedom.
Since no verification violation can possibly occur when

one of the lower interfaces of protocal(@he reman-
ing unconnected interfaces aee single valid upper
interface the @0protocolOsipperinterface), and mi
tiple valid lower nterfaces (includeall the lower in-

terfaces of OIO and all the lower interfaces of Oud except

the most recently connected}herefore, the wdle is a
verified protocol withvalid upper and lower MChi
terfaces with no other external communication inte
faces, meeting all the conditions MdCP compliance

In a ktiered MCP hierarchy the highestcoherence
realmin the hierarchy (whiclbegins by encompassing
only the two top-most tiers of the system) can be
proved to be a verifiabldCP compliant protocol
through Theorem 2 and Axiom 1As a result, the two
tiers of this realm can logically be replaced by a-Osi
gle® MCP compliant protocol, whiis the merger of

merging these two protocols, we can safely say thethese two iers (shown in the equations supporting

crossproduct of thé& respective state spaces into a
unified state space will not introduce any new violating
states, enabling us to appfncapsulation symmetry
from Section4.2 for verification.

5.2.Theorem 2 BArbitrarily deep MCP Hiera rchies

Axiom 1: R(u,) is both verified and has MCP coroit
upper and lower interfaces, being composition of MCP
protocols. " R(u, 1) is also a verified MCP compliant pimt
col.

Theorem?2 D Arbitrarily deep MCP coherence hiemhies
are verifable through indudgon via thefollowing:

H(2) = R(u,), where H(2) is a verified MCP compliantgar
tocol hierarchy of two tiers, and

H(n +1) = R(H(n), l), where H(n+1) is a verified MCP oo
pliant protocol hierarchyof (n +1) tiers

Axiom 1 stems from the structurally resive nature
of MCP composition. From Theoreinn the previous
subsection,we know a 2tier coherence realm oo
posed ofindepementy verified MCP protocols isalso
verified. Additionally, because each componentgrot
col only has a upperinterfaceandlower interfacés),
and the upper interface of protoc@Ois attached to

» »
T T

Figure 8 - Graphical representation of coherence hierarchy inductive proof, where the shaded e

region repr esents H(n) forn=2 ! k (k= 4).

Theorem 2) Through this processhe ktiered MCP
hierarchy has become a-{§ tiered hierarchy, where
the highestprotocol in the hierarchy is itse#f cohe-
ence hierarchy. This can be applied repeatedly until all
k-tiers have been merged intee single verified MCP
compliant protocol. Figure 8 demonstrates thigmduc-

tion graphically.

5.3.Fractal CoherenceViewpoint

Theorem2 can also beinderstoodhrough the the-
rems in theverification process ofractal Coherence
[8]. The two most important properties required for
application offFractalCoherence verification is that (a)
the minimum system is formallyerified and (b)the
hierarchy isobservationally equivalent.

Rather than assuming only a single minimum system
being replicated, MCP composition assumes multiple
systems being integrated that magt be identical.
However, if each component is independently formally
verified, this is similar to a single kernel protocol being
verified and used repeatedly. Additionally, a kind of
observational equivalence can be gained through the
use of a standdized interface, which MCP provides.
From Theorems 1 and 2, we know each component of

4 b

i

;

‘

:

:
.
Yoob b

nclosed

‘New'
Requestor
Client

GetReadD

GetReadDAck

Figure 9 - Local GetReadD Get sequence (Request and Response) in a MOSI protocol that currently holds

write permissions.

GetReadD

Figure 10 - Remote GetReadD Get sequence (Request

GetReadDAck SupplyDowngradeAck

GetReadDAck

and Response), using a proxy client to satisfy

SupplyDowngradeAck Demand request in a MOSI tier that currently holds write permissions

an MCP hierarchy is formally verified, and connection
of thesethrough manageiclient pairing of interfaces
does not violate verification. As describedSection
5.2regardingAxiom 1 and the interfacesvhen treated
as black boxes;ompositions of MCP componentagpr
tocols arenearly observationally equivalent because

mission checking)Gets (permission acquisition) and
Demandg(permission surrendering)Let us first ca-
sider theQuery andGet portions of the MCP interface.
For Queries permission status requssiannotmodify
the stateof the protocol as they are simploolean

checksand herefore have no verification impact. In

each additional tier connects to either upper or lower order toevaluate Theorem 1 with respect to applying

interfaces while prading new upper or lower inte
faces that are functionally equivalenfThey are not

the MCP interface specificatioto averified nonMCP
compliantprotocol theonly actions fromAppendix A

strictly observationally equivalent because the number that must beconsideredare those thatan result in

of interfaces changes depending on the numberi-of cl
ents in the newly attached MCP component protocol.
In contrastto Fractal Coherencewnhich enforces lo-
servational equivalence the Ocomponent pooblsO
being perfectly self similarMCP enforcesa looser
observational equivalence throughdherence to a
standardizedhterface definition

6. Remote Proxy Client

6.1. Theorem 3 b Verification of protocols modified
with remote proxy client

Where M(x) := An MCP compliant version of protocol x

Theorem3 D If protocol x satisfies conditions (1,2,3) for
verification, andreplaces one client witta remote proxy
client, the resultig protocolM(x) does not introduce chgn
es that violate conditions (1,2,3)

" I x where protocol x is verifiedV(x) is also verified

Recall from Section3 and Appendix A, there are
three major parts to the MCP interfacgueries (per-

state change in the underlying protocol. Eeastlth
action much be mapped ta already existingction in
the protocol, based on the internal state of the protocol.

As mentioned irSection 3, however, theGet func-
tionality required for supportingCP comresponds
directly to functionality that mst already be present
for handling and satisfying processor requests in a hon
MCP version of the protocol interfaced directly with a
processor.

The biggest hurdle when mapping @re-existing
protocolOs functionalitto the MCP interfacés im-
plementinguppertier initiated Demands The memory
controller interfaceis typically not able toissuere-
quests for invalidations or downgrades a conve-
tional flat coherence protocoHowever, these actions
can ke emulatedrery easily if uppetier Demandsare
modeled as requests fromiaeal client, similar to the
pseudeCPU mechanismn DASH [2]. In our frame-
work, this functionality is served by theemote proxy
client

Theremote proxy clienacts on behalf of the upper
tier, issuing local protocol rguests to satisfy incoming

Demandrequests In addition to thistheremote proxy

clientis also stateful; it becomessummaryof all the Dreciory
permissions held by nodesternal to this coherence M
realm As long as the protocd verified, permission .

will be assigned to this proxy correctlyThis ensues D sroadeact
permissionexclusion is preserved when necessary, and | Mosi
permissionwill eventually bepassed to the appropriate i @
originator that caused tHe@emand The remote proxy oy Vo -
client does ot communcate directly across tier
boundariesremote traffic is routed through the MCP

interface in the manager.

Figure9 andFigure10 show an example of how the
Demandhandling behavior of theemote proxy client
is similar to the behavior of a locakquestor in a 7. Results
MOESI directoryprotocol. The actions required by the In order to demonstrate the usefulness of MCP as a
coherence realm to satisfy @upplylnvalidate(See verification technique, a heterogeneous hierarchg wa
Appendix A) are identical to those required forrha jmplemented and verified using the MunP toolkit.
dling a write request from a client in the invalid state The hierarchy was created from the composition of two
A message is sent to the osvrclient(the clientin ei- protocols: Directory-MESI and BroadcasmOSI. We
ther the M, Qor E state)to initiate a cacheto-cache designedthe DirectoryMESI protocol to benatively
transferand aselfinvalidaion. Invalidation messages MCP compliant, without the need forramote praty
are sent to all other sharers in the bit vector. When thisclient. The BroadcastMOSI protocolis a MOSI po-
sequence concludes, the realm manager and other cltocol communicating over a shared bus and was ported
ents wil have given write permissions and a copy of directly from the GEMS implementation to MurPhi
the data to this client by removing all readable copies To make this protocol MCP compliant, a client was
from the realmIn the case of theemote proxy client scavenged to serve as tieenote proxy clientno other
the realm can respond withSupplylnvalidateAckip- changes were made to the underlying -GeshelfO
on completion of the protocol sequersiece & cond- GEMS protocol.
tions are met (i.e., the realm no longer has any copies The evaluated heterogeneous hierarchicatocolis
with read or write permission and the most recent copy shown inFigure 11. The number of clients in each
of the data is available and ready for forwarding). protocol is varied and the configurations are denoted in

Implementingremote proxy clientdoes not actually — Table 2 Thefigure illustrates the Dir3 + B3 config
require adding another client toet protocol. Rather, an ration, where one client in the DirecteMESI is
existing client can be sacrificed to act as theote paijred with the BroadcastOSI, and one client in the
proxy client So a protocol that is verified for fouricl BroadcastMOSI is dedicated asr@mote proxy client.
ents could be made into acBent MCP compliantpro- The hierarchical protocol was evaluated via full state
tocol by selecting one of the clients to serve the role of exploraton using MurPhi, and was also verified by
aremoteproxy client SinceDemandhandling does not |everaging MCP structural symmetry. The results of
introduce new states or messages when a proxyeis pr this verification effort are denoted ifiable 2 The
sent, there are no changes to the original state machinegumber of states represents the full state space of the

1

|

1

1 Proxy

I Client

: Interface
1

1

1

’

Figure 11 B Evaluated Heterogeneous Hiera r-
chical Protocol Structure

and the protocol remains verified. combined protocols, and théme to verify without
In summary, ecapsulating a protocol visICP in- MCP is the total time for MurPhi to cqtete a full
terfaces can be se@sapplyinga translation layer that state exploration (similar tigure6). The verification
introduces no new additional state transitjstates or costs with MCP is simply the sum of the verification
new messages to the protocol. Thisseresthe ver- costs of the component protocothie to encapsulation

fication properties of the originatomponent protocol ~ symmetry As is evident from theseesults, MCP

Since MCP does not modify the state machinghé greatly reduces the verification cost, especially at the
base protocol correctly distributes permissions without higher client count degn points

deadlocking or livelocking, so does an MCP compliant
version of the same protocol.

10

Table 2 B Comparing verification cost of heterog e-
neous hierarchical protocols with and without le V-
eraging MCP protocol struc tural symmetry *

Time to Verify

Protocol # of States | Time to Verify [s] # of States (WMCP) [(W/MCP) [s]

Dir2 + B2 11,861 0.34 3,716 0.20)
Dir2 + B3 425,99(173 167,16] 4.89
Dir3 + B2 182,191 8.51 10,194 0.23}
Dir3 + B3 5,367,734 542.44 173,639 4.92)
Dir4 + B3 71,642,21 84,734.63 274,769 8.1
Dir3 + B4 143,552,70| 317,891.0 4,314,12 331.95
Dir4 + B4 | 500,000,000 7,000,0004 4,415,257 335.1

8. Conclusion

There is a strong interest in mutibre architectures

that use flexible, heterogeneous coherence hierarchies,

such as CPU+GPU pairings or mulgndor coherent

shared memory ensembles. But without a verification

solution, thes protocol8l and the potentially powerful
and energyefficient systems they enalleannot be
built. It is clear that a solution to the verification pro
lem must be found.Prior solutions were limited to
homogeneousierarchies wherein every level of the
system must practice the same proto@&l 1. This
paper leveraged the recently published Man#gjemt
Pairing encapsulation composition framework?]|
which explicitly supports heterogeneityJsing MCP,
we proved that any heterogeneous protocol cdugd
verified in no more time than it would take to validate
each individual protocol in isolation.

The theoretical nature of this paper is inescap
ble. However, we havéried to bring this work toe-
ality by implementing a coherence hierarchy in & fo
mal verification tool. The intractability of obtaining
results for our largest simulatioestablisies the need
for formal verification accelerationWe defined a new
form of protocol structural symmetry for coherence
hierarchies, based on protocol encapsutaand pe
mission distribtion. We poved how MCP can be
used as aerification composition framework for ke
erogeneous hierarchies composed ofymefied pio-
tocols. With the framework presented here, hiera
chical, heterogeneous coherence can becomiedis-
trial success rather than being limited by practicailver
fication complexities.

References

[1] S. Haridi and E. Hagersten, "The Cache Coherenae Pr
tocol of the Data Diffusion Machine," presented at the
Proceedings of the Parallet¢hitectures and Langges
Europe, Volume I: Parallel Architectures, 1989.

! Dir4+B4 state space was ttarge for full state space verific
tion to complete, due to the intractable nature of stptee exm-
sion. The numbers presented in the first two columns for these co
figurations are the minimum bounds collected from the periodic
progress report aft&@0 days of execution.

11

[2] D. Lenoski, et al., "The directoflyased cache coherence
protocol for the DASH multiprocessor," SIGARCH
Comput. Archit. News, vol. 18, pp. 1459, 1990.
E. Hagersten and M. Koster, "WildFire: A ScalaBlath
for SMPs," presented at the Proceedings of the rbth |
ternational Symposium on High Performance Computer
Architecture, 1999.
L. A. Barroso, et al., "Piranha: a scalable architecture
based on singlehip multiprocessing," presented at the
Proceeding®f the 27th annual international symposium
on Computer architecture, Vancouver, British Golu
bia, Canada, 2000.
G. Gostin, et al., "The architecture of the HP Superdome
sharedmemory multiprocessor," presented at the-Pr
ceedings of the 19th annual inteinatl conference on
Supercomputing, Cambridge, Massachusetts, 2005.
M. M. K. Martin, et al., "Multifacet's general execution
driven multipocessor simulator (GEMS) toolset,"
SIGARCH Comput. Archit. News, vol. 33, pp.-92,
2005.
Philippe Charles, Christia Grothoff, Vijay Saraswat,
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph von Praun, and Vivek Sarkar. 2005. X10: an
objectoriented approach to namiform cluster comgp-
ting. SIGPLAN Not40, 10 (October 2005), 51338
Meng ZhangAlvin Lebeck,Daniel Sorin, "Fractal 6
herence: Scalably Verifiable Cache Coherenceg- pr
sented at the International Symposium on Microarch
tecture, Atlanta, Gegia, 2010.
M. M. K. Martin, et al., "Token coherence: decoupling
performance and correctness," presdrdt the Proceke
ings of the 30th annual international symposium on
Computer architecture, San Diego, California, 2003.
[10] C. Norris Ip and David L. Dill. 1996. Better verification
through symmetryForm. Methods Syst. De9, 1-2
(August 1996), 4175
[11] E. Lada-Mozes and C. E. Leiserson, "A consistency
architecture for hierarchical shared caches," presented at
the Poceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures, Munich,
Germany, 2008
[12] J. G. Beu, M. C. Rosier and T. Mhonte, OManager
Client Pairing: A Framework for Implementing Cahe
ence Hierarchies,Broceedings of the $4Annual h-
ternational Symposium on Microarchitare (MICRO
44), (Porto Alegre, Brazil), Dec., 2011.
[13] Frans H. van Eemeren and Rob Grootendorst,eOTh
Fallacies of Composition and DivisionO, in OJFA%. E
says Dedicated to Johan van Benthem on the Occasion
of his 50th BirthdayO, Amsterdam University Press
1999. http://www.illc.uva.nlj50/contribs/eemeren/
eemeren.pdf
"Protocol Verification as a Hardware Design Aid,"
David L. Dill, Andreas J. Drexler, Alan J. Hu and C.
Han Yang, 1992 I|EEE International Cenénce on
Computer Design: VLSI in Computers and Processors,
IEEE Computer Soety, pp. 522525.
[15] E. M. Clarke and J. M. Wing, "Formal methods: state of
the art and future directions," ACM Comput. Surv., vol.
28, pp. 626543, 1996.
[16] K. L. McMillan, "Parametdzed Verification of the
FLASH Cache Coherence Protocol by Compositional

(3]

[4]

[5]

(6]

[7]

(8]

(9]

[14]

Model Checking," presented at the Proceedings of the
11th IFIP WG 10.5 Advanced Research WorkinghCo
ference on Correct
Methods, 2001.

[17] S. Park and DL. Dill, "Verification of FLASH cache
coherence protocol by aggregation of distributedstran
actions," presented at the Proceedings of the eighth a
nual ACM symposium on Parallel algorithms and arch
tectures, Padua, Italy, 1996.

[18] U. Stern and D. L. Dill, "Irproved probabilistic verif
cation by hash ceaopaction," presented at the Prodee
ings of the IFIP WG
Conference on Correct Hardware Design and Verific
tion Methods, 1995.

[19] D. A. Wood, et al., '
Controller Using Random Test @eration," IEEE Des.

Test, vol. 7, pp. 125, 1990.
Hardware Design and Verification

29, pp. 82126, 1997.

Archit. News25(2): 241251.

10.5 Advanced Research Working 1992)

'Vafying a Multiprocessor Cache

Appendix A: MCP Actions

Lower Tier Manager to Upper Paired Client Permission Query

HaveReadP Return true if paired Client has read permission
HaveWriteP Return true if paired Client has write permission
HaveEvictP Return true if paired Client can be safely evicted

Lower Tier Manager to Upper Paired Client Permission

Get

GetReadD

Paired Client begins data and read permission acquisition sequence within it's native coherence realm.
L1/Lower Manager expects GetReadDAck upon completion.

GetExclusiveD

Paired Client begins data and write permission acquisition sequence within it's native coherence realm.
L1/Lower Manager expects GetExclusiveDAck upon completion.

GetExclusive

Paired Client begins write permission acquisition sequence within it's native coherence realm. L1/Lower
Manager expects GetExclusiveAck or GetExclusiveDAck upon completion.

Used when data is already available in L1/Lower Manager (HaveData == true) and only a permission upgrade is
required.

May be satisfied by a GetExclusiveDAck if upper tier protocol demands a downgrade while GetExclusive is in
flight, causing HaveData to become false.

GetEvict

Paired Client begins eviction sequence within it's coherence realm. L1/Lower Manager expects GetEvictAck
upon completion.

Used when block ownership or most recent dirty version resides in L1/Lower Manager's realm.

Needs to include data payload when data being evicted is dirty.

Upper Tier Client to Lowel|

r Paired Manager Permission Request Reply

GetReadDAck Response by paired Client to complete previous GetReadD request. Supplies data packet and signifies paired
Client (and thus lower Manager's realm) now has read permissions.
GetExclusiveDAck Response by paired Client to complete previous GetExclusive/GetExclusiveD request. Supplies data packet and

signifies paired Client (and thus lower Manager's realm) now has write permissions.

GetExclusiveAck

Response by paired Client to complete previous GetExclusive request. Signifies paired Client (and thus lower
Manager's realm) now has write permissions.

GetEvictAck

Response by paired Client to complete previous GetEvict request. Signifies paired Client has become invalid.
Therefore, Manager's realm can safely eliminate all local copies of the block.

Upper Tier Client to Lowel|

r Paired Manager Demand

Supply

Demand data supply from lower tier's paired Manager or L1. No additional actions required by lower tier.

Used for data forwarding to satisfy remote read when Manager-Client pair permission levels already match.

Invalidate Demand lower realm to forfeit write permissions and read permissions, invalidating all local copies of data.
Used to satisfy remote write request which requires exclusive rights when remote realm already has a copy of
the data.

SupplyDowngrade Demand Data from lower realm's paired Manager. Additionally, lower realm must forfeit write permissions but

can retain read permissions and data.

Used for data forwarding to satisfy remote read when upper-tier paired Client state is forfeiting exclusive/write
permissions.

Supplylnvalidate

Demand Data from lower realm's paired manager. Additionally, lower realm must forfeit write permissions AND
read permissions, invalidating all local copies of data.

Used for data forwarding to satisfy remote exclusive/write request when remote realm expects data supplied
from this realm.

Lower Tier Manager to Upper Paired Client Demand Reply

SupplyAck

Response by paired Manager to complete previous Supply demand. Supplies data packet.

InvalidateAck

Response by paired Manager to complete previous Invalidate demand. Signifies realm invalidation has
completed.

SupplyDowngradeAck

Response by paired Manager to complete previous SupplyDowngrade demand. Supplies data packet and
signifies realm downgrade has completed.

SupplylInvalidateAck

Response by paired Manager to complete previous SupplyInvalidate demand. Supplies data packet and

signifies realm invalidation has completed.

12

[20] F. Pong and M. Dubois, "Verifition tedniques for
cache oherence protocols," ACM Comput. Surv., vol.

[21] Laudon, J. and D. Lenoski (1997). "The SGI Origin
ccNUMA highly scalable server." SIGARCH Comput.

[22] Daniel Lenoski, James Laudon, Kourosh Ghhorloo,
Wolf-Dietrich Weber, Anoop Gupta, John hihessy,
Mark Horowitz, and Monica S. Lam. 1992. The rSta
ford Dash MultiprocessorComputer 25, 3 (March

[23] Tom Lovett and Russell Clapp. 1996. STING: a-CC
NUMA computer system for the commercial marke
place. InProceedings of the 23rd annual international
symposiunon Computer architectur@SCA '96)

