

 Introduction
 Contech’s Task Graph Representation
 Parallel Program Instrumentation
 (Break)
 Analysis and Usage of a Contech Task Graph
 Hands-on Exercises

2

 Compiler-based framework to generate task graphs

 Example analysis (i.e., backends) of Task Graphs

 Data Race Detection

 Cache modeling

 Lock contention

3

 Model memory space and use
edges to find happens-before

 Critical Sections

 Syncs around task 1:20

 Syncs around task 12:15

 1:20 -> 12:25 is not a race
 12:13 -> 1:22 is a race

4

 Similar to Helgrind, Eraser, FastTrack, IFRit, LightRace, PACER, et
cetera

 Bodytrack

 91037 races observed

 Number of BB's containing races: 16

▪ Conflicting access address: 7fff936f3be0(Idx:0) in (Context:Task) -- (0:32) and (11:0)

▪ 16107, mainPthreads(std::string, int, int, int, int, int, bool), main.bc:43

▪ 9941, threads::thread_entry(void*), Thread.bc:32

5

 Supply a cache simulator with a sequence of read and write
addresses

 Change size, associativity, replacement

 Task graph also has basic blocks and memory allocations

6

7

Miss Rate

LOG2 Cache Size

 256KB shared cache (35% miss rate)
 Basic block 26 – 98.5% of all misses

▪ bs_thread(void*) @ blackscholes.m4.bc:376
▪ Each thread has a block start < i < end to process
▪ price = BlkSchlsEqEuroNoDiv(sptprice[i], strike[i], rate[i],
volatility[i], otime[i], otype[i], 0);

 Allocation at block 67 of 327936B (99.8% of misses)
buffer = (fptype *) malloc(5 * numOptions * sizeof(fptype) + PAD);

sptprice = (fptype *) (((unsigned long long)buffer + PAD) &
~(LINESIZE - 1));

strike = sptprice + numOptions;

rate = strike + numOptions;

volatility = rate + numOptions;

otime = volatility + numOptions;

8

 Track the synchronization in a program

 When do timestamps overlap for [Release] -> [Acquire]

 What program points generate the most contention?

 Almost 6 million lock acquires

 Less than 600 are contended

 Contention is doubled on the second of a pair of locks

Contented
Acquires Function Name

File and Line
Number

97 ComputeDensitiesMT(int) pthreads.bc:732
224 ComputeDensitiesMT(int) pthreads.bc:741
88 ComputeForcesMT(int) pthreads.bc:834

173 ComputeForcesMT(int) pthreads.bc:843

Parallelism

Code
Executed

Memory
Accesses

11

Data Races

Lock Contention

Cache Model

Task Graphs

 C++11-based API for analysis
 Three major classes

 Task Graph – Contains everything

 Task Graph Info – Debugging-like information

 Task – Actual contents

 Instantiates from a task graph file

 Reads in the Task Graph Info

 Parses the “table of contents”

▪ Provides the location of every task in the file

▪ Provides a breadth-first traversal of the graph

 Sequential and random access to tasks

 Static Information about the Task Graph’s program

 Map of basic block ID to information about that block

▪ Filename, line number

▪ Parent function

▪ Count of IR operations, memory operations, etc

 (Future work) Type information, Function types, etc

 All of the data associated with this node in the graph

 Identifiers

 Task predecessors and successors

 Type (i.e., partition)

 Timestamps

 Basic block and memory actions

 Identifiers

 TaskId = ContextId | SeqId

 Task relations are expressed using IDs, not pointers

 Actions

 Basic block – ID

 Memory operation – Reads and Writes

 Memory action – Ops + malloc, free, bulk accesses (memcpy)

 Cache simulator takes a trace of memory accesses
 Iterate through the tasks to generate the sequence of accesses

auto memOps = currentTask->getMemOps();

for (auto itMemOp = memOps.begin(),
etMemOp = memOps.end();

itMemOp != etMemOp; ++itMemOp)
{

auto MemoryAction ma = *itMemOp;

char numOfBytes = (0x1 << ma.pow_size);
uint64_t address = ma.addr;

// invoke cache simulator

 Simple backends can extend the Backend class
 Iterates through the tasks, passing each to the backend

▪ void updateBackend(contech::Task*);

 When all tasks have been parsed, output the analysis to a file
▪ void completeBackend(FILE*, contech::TaskGraphInfo*);

BackendMemUse* bmu = new BackendMemUse();
SimpleBackendWrapper* sbw = new SimpleBackendWrapper(argv[1], bmu);

sbw->runBackend();
sbw->completeRun(stdout);

delete sbw;
delete bmu;

 How to store an address for non-loads and stores
 Locks are identified by address

 Malloc returns an address

 Sync tasks contain a single memory operation

 Mallocs are followed by a memory operations
 Action type malloc contains the return address

 Action type size contains the size in the address field

