
Brian Railing, Georgia Institute of Technology



 Parallel Program Analysis Framework

 Compiler-based Parallel Program 
Instrumentation

 Open Source: 
http://bprail.github.io/contech/

2



 Task Graph analysis

 Compiler with C++11 support

 zlib (http://www.zlib.net/zlib.html)

 Contech Instrumentation

 LLVM + Clang built with LTO support

▪ Requires gold linker

3



 Provide a common representation for diverse 
parallel programs

 High performance instrumentation to 
generate this representation

4



 Learn the basics of Contech’s task graph 
representation

 Explore the compiler-based instrumentation

 Understand what it supports

 What it does not support

 And how to change these statements

 How to write program analyses with Contech

5



 Language Diversity
 Runtime Diversity
 Pattern Diversity
 Platform Diversity

6



 What languages, runtimes, etc are you, the 
attendees, using?

7



 (examples)

8



 Analysis tools can target the program itself

 Not implementation details

 Task graphs are a common representation

 Agnostic of many program details

 C++11 API for accessing task graphs

9



 A common representation needs
 What was executed

 What was accessed

 In what order did threads execute

 Without recording
 Context switches

 Consistency model

 Cache Effects

 …

10



 Introduction
 Contech’s Task Graph Representation
 Parallel Program Instrumentation
 (Break)
 Analysis and Usage of a Contech Task Graph
 Hands-on Exercises

11



 A directed acyclic graph

 Nodes are tasks, which describe “work”

 Edges are dependencies between tasks

12



 Originally, a representation for evaluating 
scheduling algorithms

 Programs were abstract computation graphs

13
Blumofe , et al. STOC 1993



 Task graphs can also be used for runtime 
scheduling

 Language Choice
 Cilk, HPF

 Program Structure
 Regular Access / Execution Patterns

 Programmer Effort
 Pragmas, Wrapper Routines

14



 Generate the graph with no user intervention

 Without constraint of language, library, or 
structure

 Task Graphs contain

 Nodes partitioned based on type

 Edges as scheduling dependencies

 Nodes contain lists of actions and data

 Other graph annotations such as start / end time

15



 Types of Nodes

 Create

 Join

 Sync

 Barrier

 Work (a.k.a. Basic Block)

 Edges are not partitioned, thus have no type

16

NON-WORK



 Contech Task Graph Nodes have two 
identifiers

 Context ID

▪ Identifies an aggregation of concurrent work

▪ Including: Thread, hardware context, task, loop iteration

 Sequence ID

▪ Where this task is ordered in its Context

17



18



#pragma omp parallel 

{

#pragma omp single

{

;

}

;

}

19



#pragma omp parallel 

{

#pragma omp single

{

;

}

;

}

20



#pragma omp parallel 

{

#pragma omp single

{

;

}

;

}

21



#pragma omp parallel 

{

#pragma omp single

{

;

}

;

}

22

BBID X
BBID Y
BBID Z

BBID Z



#pragma omp parallel 

{

#pragma omp single

{

;

}

;

}

23



#pragma omp parallel 

{

#pragma omp single

{

;

}

;

}

24



 All tasks are attributed to a Context

 Which Context “owns” a barrier?

 There is no right answer

25



26



27

int fib(int n) {

if (n < 2)

return n;

int a = cilk_spawn fib(n-1);

int b = cilk_spwan fib(n-2);

cilk_sync;

return a + b;

}



 Task graph construction alternates work and 
non-work in a Context

 Certain cases result in the work task containing no 
work

 This is an artifact of the implementation, not a 
fundamental invariant of the graph

28



29

 OpenMP Tasks

 4:0 is empty

▪ Sync task is in/out dependency

 4:2 is body of task

 5:0 is empty

▪ Dependent on result from Context 4



 Contech’s Task Graph representation

 Unifies diverse parallel programs into common 
format

 Provides independence from the architecture and 
implementation details

30


