Brian R



Parallel Program Analysis Framework

Compiler-based Parallel Program
Instrumentation

Open Source:
http://bprail.github.io/contech/



Task Graph analysis

Compiler with C++11 support
zlib (http://www.zlib.net/zlib.html)

Contech Instrumentation
LLVM + Clang built with LTO support

Requires gold linker



Provide a common representation for diverse
parallel programs

High performance instrumentation to
generate this representation



Learn the basics of Contech’s task graph
representation
Explore the compiler-based instrumentation

Understand what it supports
What it does not support

And how to change these statements
How to write program analyses with Contech



_.anguage Diversity
Runtime Diversity
Pattern Diversity
Platform Diversity




What languages, runtimes, etc are you, the
attendees, using?



(examples)



Analysis tools can target the program itself

Not implementation details

Task graphs are a common representation

Agnostic of many program details

C++11 API for accessing task graphs



A common representation needs
What was executed
What was accessed
In what order did threads execute

Without recording
Context switches
Consistency model
Cache Effects

10



Introduction
Contech’s Task Graph Representation

Parallel Program Instrumentation

(Break)
Analysis and Usage of a Contech Task Graph

Hands-on Exercises

11



A directed acyclic graph

Nodes are tasks, which describe “work”
Edges are dependencies between tasks

12



Originally, a representation for evaluating
scheduling algorithms

Programs were abstract computation graphs

Blumofe, et al. STOC 1993 13



Task graphs can also be used for runtime
scheduling

Language Choice
Cilk, HPF

Program Structure
Regular Access / Execution Patterns

Programmer Effort
Pragmas, Wrapper Routines

14



Generate the graph with no user intervention

Without constraint of language, library, or
structure

Task Graphs contain
Nodes partitioned based on type
Edges as scheduling dependencies
Nodes contain lists of actions and data
Other graph annotations such as start / end time

15



Types of Nodes

Work (a.k.a. Basic Block)

Edges are not partitioned, thus have no type

16



Contech Task Graph Nodes have two
identifiers

Context ID

Identifies an aggregation of concurrent work

Including: Thread, hardware context, task, loop iteration

Sequence ID

Where this task is ordered in its Context

17



Dependency

Work Task

.
.
.
.
.
.
.Q
.

Context ID Sequence ID

18



#pragma omp parallel
{

#pragma omp single

{

o

oo

19



#pragma omp single

{

20



#pragma omp parallel -
{ oo i

21



#pragma omp parallel
{

fpragma omp single g

{

D X
D Y

D /

22



1 &
%{#pragma omp paralle I

fpragma omp single g
{

oo

e

23



#pragma omp parallel
{

#pragma omp single

{

o

oo




All tasks are attributed to a Context

Which Context “owns” a barrier?
There is no right answer

25






27

P
Cua)

Y
1:4 )
A

1
L

14

)

b(n-2) 7

i

{

1k spwan f

o
4

cilk spawn fib (n-1

Cl

o
7

int fib (int n)
if (n < 2)
return n
int a =
int b =
cilk sync
return a +t\b;




Task graph construction alternates work and
non-work in a Context
Certain cases result in the work task containing no
work

This is an artifact of the implementation, not a
fundamental invariant of the graph

28



OpenMP Tasks
4:0 is empty
Sync task is in/out dependency
4:2 is body of task
5:0 i1s empty

Dependent on result from Context 4




Contech’s Task Graph representation

Unifies diverse parallel programs into common
format

Provides independence from the architecture and
implementation details

30



