
Brian Railing, Georgia Institute of Technology



 Parallel Program Analysis Framework

 Compiler-based Parallel Program 
Instrumentation

 Open Source: 
http://bprail.github.io/contech/

2



 Task Graph analysis

 Compiler with C++11 support

 zlib (http://www.zlib.net/zlib.html)

 Contech Instrumentation

 LLVM + Clang built with LTO support

▪ Requires gold linker

3



 Provide a common representation for diverse 
parallel programs

 High performance instrumentation to 
generate this representation

4



 Learn the basics of Contech’s task graph 
representation

 Explore the compiler-based instrumentation

 Understand what it supports

 What it does not support

 And how to change these statements

 How to write program analyses with Contech

5



 Language Diversity
 Runtime Diversity
 Pattern Diversity
 Platform Diversity

6



 What languages, runtimes, etc are you, the 
attendees, using?

7



 (examples)

8



 Analysis tools can target the program itself

 Not implementation details

 Task graphs are a common representation

 Agnostic of many program details

 C++11 API for accessing task graphs

9



 A common representation needs
 What was executed

 What was accessed

 In what order did threads execute

 Without recording
 Context switches

 Consistency model

 Cache Effects

 …

10



 Introduction
 Contech’s Task Graph Representation
 Parallel Program Instrumentation
 (Break)
 Analysis and Usage of a Contech Task Graph
 Hands-on Exercises

11



 A directed acyclic graph

 Nodes are tasks, which describe “work”

 Edges are dependencies between tasks

12



 Originally, a representation for evaluating 
scheduling algorithms

 Programs were abstract computation graphs

13
Blumofe , et al. STOC 1993



 Task graphs can also be used for runtime 
scheduling

 Language Choice
 Cilk, HPF

 Program Structure
 Regular Access / Execution Patterns

 Programmer Effort
 Pragmas, Wrapper Routines

14



 Generate the graph with no user intervention

 Without constraint of language, library, or 
structure

 Task Graphs contain

 Nodes partitioned based on type

 Edges as scheduling dependencies

 Nodes contain lists of actions and data

 Other graph annotations such as start / end time

15



 Types of Nodes

 Create

 Join

 Sync

 Barrier

 Work (a.k.a. Basic Block)

 Edges are not partitioned, thus have no type

16

NON-WORK



 Contech Task Graph Nodes have two 
identifiers

 Context ID

▪ Identifies an aggregation of concurrent work

▪ Including: Thread, hardware context, task, loop iteration

 Sequence ID

▪ Where this task is ordered in its Context

17



18



#pragma omp parallel 

{

#pragma omp single

{

;

}

;

}

19



#pragma omp parallel 

{

#pragma omp single

{

;

}

;

}

20



#pragma omp parallel 

{

#pragma omp single

{

;

}

;

}

21



#pragma omp parallel 

{

#pragma omp single

{

;

}

;

}

22

BBID X
BBID Y
BBID Z

BBID Z



#pragma omp parallel 

{

#pragma omp single

{

;

}

;

}

23



#pragma omp parallel 

{

#pragma omp single

{

;

}

;

}

24



 All tasks are attributed to a Context

 Which Context “owns” a barrier?

 There is no right answer

25



26



27

int fib(int n) {

if (n < 2)

return n;

int a = cilk_spawn fib(n-1);

int b = cilk_spwan fib(n-2);

cilk_sync;

return a + b;

}



 Task graph construction alternates work and 
non-work in a Context

 Certain cases result in the work task containing no 
work

 This is an artifact of the implementation, not a 
fundamental invariant of the graph

28



29

 OpenMP Tasks

 4:0 is empty

▪ Sync task is in/out dependency

 4:2 is body of task

 5:0 is empty

▪ Dependent on result from Context 4



 Contech’s Task Graph representation

 Unifies diverse parallel programs into common 
format

 Provides independence from the architecture and 
implementation details

30


